廣東六校聯(lián)盟2026屆數(shù)學(xué)高二上期末預(yù)測試題含解析_第1頁
廣東六校聯(lián)盟2026屆數(shù)學(xué)高二上期末預(yù)測試題含解析_第2頁
廣東六校聯(lián)盟2026屆數(shù)學(xué)高二上期末預(yù)測試題含解析_第3頁
廣東六校聯(lián)盟2026屆數(shù)學(xué)高二上期末預(yù)測試題含解析_第4頁
廣東六校聯(lián)盟2026屆數(shù)學(xué)高二上期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東六校聯(lián)盟2026屆數(shù)學(xué)高二上期末預(yù)測試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.用1,2,3,4這4個數(shù)字可寫出()個沒有重復(fù)數(shù)字的三位數(shù)A.24 B.12C.81 D.642.若圓與圓相切,則的值為()A. B.C.或 D.或3.函數(shù)為的導(dǎo)函數(shù),令,則下列關(guān)系正確的是()A. B.C. D.4.已知數(shù)列滿足,則滿足的的最大取值為()A.6 B.7C.8 D.95.甲、乙兩名同學(xué)8次考試的成績統(tǒng)計如圖所示,記甲、乙兩人成績的平均數(shù)分別為,,標(biāo)準(zhǔn)差分別為,,則()A.>,< B.>,>C.<,< D.<,>6.若圓與直線相切,則實(shí)數(shù)的值為()A. B.或3C. D.或7.設(shè)函數(shù)是定義在上的函數(shù)的導(dǎo)函數(shù),有,若,,則,,的大小關(guān)系是()A. B.C. D.8.設(shè)雙曲線的左、右頂點(diǎn)分別為、,點(diǎn)在雙曲線上第一象限內(nèi)的點(diǎn),若的三個內(nèi)角分別為、、且,則雙曲線的漸近線方程為()A. B.C. D.9.已知空間向量,,,若,,共面,則m+2t=()A.-1 B.0C.1 D.-610.設(shè)命題,,則為().A., B.,C., D.,11.若空間中n個不同的點(diǎn)兩兩距離都相等,則正整數(shù)n的取值A(chǔ).至多等于3 B.至多等于4C.等于5 D.大于512.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》記有行程減等問題:三百七十八里關(guān),初行健步不為難次日腳痛減一半,六朝才得到其關(guān).要見每朝行里數(shù),請公仔細(xì)算相還.意為:某人步行到378里的要塞去,第一天走路強(qiáng)壯有力,但把腳走痛了,次日因腳痛減少了一半,他所走的路程比第一天減少了一半,以后幾天走的路程都比前一天減少一半,走了六天才到達(dá)目的地.請仔細(xì)計算他每天各走多少路程?在這個問題中,第四天所走的路程為()A.96 B.48C.24 D.12二、填空題:本題共4小題,每小題5分,共20分。13.直線與圓交于A、B兩點(diǎn),當(dāng)弦AB的長度最短時,則三角形ABC的面積為________14.若直線與平行,則實(shí)數(shù)________.15.已知數(shù)列滿足,則__________.16.設(shè)函數(shù),.若對任何,,恒成立,求的取值范圍______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(為自然對數(shù)的底數(shù)).(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有且僅有2個零點(diǎn),求實(shí)數(shù)的值.18.(12分)已知函數(shù)的圖象在點(diǎn)P(0,f(0))處的切線方程是(1)求a、b的值;(2)求函數(shù)的極值.19.(12分)已知等比數(shù)列{an}中,a1=1,且2a2是a3和4a1的等差中項(xiàng).數(shù)列{bn}滿足b1=1,b7=13,且bn+2+bn=2bn+1.(1)求數(shù)列{an}的通項(xiàng)公式;(2)求數(shù)列{an+bn}前n項(xiàng)和Tn.20.(12分)如圖,在四棱錐中,底面,,,,,為上一點(diǎn),且.請用空間向量知識解答下列問題:(1)求證:平面;(2)求平面與平面夾角的大小.21.(12分)已知:,:.(1)當(dāng)時,求實(shí)數(shù)的取值范圍;(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.22.(10分)在三棱錐A—BCD中,已知CB=CD=,BD=2,O為BD的中點(diǎn),AO⊥平面BCD,AO=2,E為AC的中點(diǎn)(1)求直線AB與DE所成角的余弦值;(2)若點(diǎn)F在BC上,滿足BF=BC,設(shè)二面角F—DE—C的大小為θ,求sinθ的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由題意,從4個數(shù)中選出3個數(shù)出來全排列即可.【詳解】由題意,從4個數(shù)中選出3個數(shù)出來全排列,共可寫出個三位數(shù).故選:A2、C【解析】分類討論:當(dāng)兩圓外切時,圓心距等于半徑之和;當(dāng)兩圓內(nèi)切時,圓心距等于半徑之差,即可求解.【詳解】圓的圓心為,半徑為,圓的圓心為,半徑為.①當(dāng)兩圓外切時,有,此時.②當(dāng)兩圓內(nèi)切時,有,此時.綜上,當(dāng)時兩圓外切;當(dāng)時兩圓內(nèi)切.故選:C【點(diǎn)睛】本題考查了圓與圓的位置關(guān)系,解答兩圓相切問題時易忽略兩圓相切包括內(nèi)切和外切兩種情況.解答時注意分類討論,屬于基礎(chǔ)題.3、B【解析】求導(dǎo)后,令,可求得,再利用導(dǎo)數(shù)可得為減函數(shù),比較的大小后,根據(jù)為減函數(shù)可得答案.【詳解】由題意得,,,解得,所以所以,所以為減函數(shù)因?yàn)?,所以,故選:B【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:比較大小的關(guān)鍵是知道的單調(diào)性,利用導(dǎo)數(shù)可得的單調(diào)性.4、B【解析】首先地推公式變形,得,,求得數(shù)列的通項(xiàng)公式后,再解不等式.【詳解】因?yàn)?,兩邊取倒?shù),得,整理為:,,所以數(shù)列是首項(xiàng)為1,公差為4的等差數(shù)列,,,因?yàn)?,即,得,解得:?所以的最大值是7.故選:B5、A【解析】根據(jù)折線統(tǒng)計圖,結(jié)合均值、方差的實(shí)際含義判斷、及、的大小.【詳解】由統(tǒng)計圖知:甲總成績比乙總成績要高,則>,又甲成績的分布比乙均勻,故<.故選:A.6、D【解析】利用圓心到直線的距離等于半徑可得答案.【詳解】若圓與直線相切,則到直線的距離為,所以,解得,或.故選:D.7、C【解析】設(shè),求導(dǎo)分析的單調(diào)性,又,,,即可得出答案【詳解】解:設(shè),則,又因?yàn)?,所以,所以在上單調(diào)遞增,又,,,因?yàn)椋?,所?故選:C8、B【解析】設(shè)點(diǎn),其中,,求得,且有,,利用兩角和的正切公式可求得的值,進(jìn)而可求得的值,即可得出該雙曲線的漸近線的方程.【詳解】易知點(diǎn)、,設(shè)點(diǎn),其中,,且,,且,,,所以,,,因?yàn)椋?,,則,因此,該雙曲線漸近線方程為.故選:B.9、D【解析】根據(jù)向量共面列方程,化簡求得.【詳解】,所以不共線,由于,,共面,所以存在,使,即,,,,,即.故選:D10、B【解析】根據(jù)全稱命題和特稱命題互為否定,即可得到結(jié)果.【詳解】因?yàn)槊},,所以為,.故選:B.11、B【解析】先考慮平面上的情況:只有三個點(diǎn)的情況成立;再考慮空間里,只有四個點(diǎn)的情況成立,注意運(yùn)用外接球和三角形三邊的關(guān)系,即可判斷解:考慮平面上,3個點(diǎn)兩兩距離相等,構(gòu)成等邊三角形,成立;4個點(diǎn)兩兩距離相等,由三角形的兩邊之和大于第三邊,則不成立;n大于4,也不成立;空間中,4個點(diǎn)兩兩距離相等,構(gòu)成一個正四面體,成立;若n>4,由于任三點(diǎn)不共線,當(dāng)n=5時,考慮四個點(diǎn)構(gòu)成的正四面體,第五個點(diǎn),與它們距離相等,必為正四面體的外接球的球心,由三角形的兩邊之和大于三邊,故不成立;同理n>5,不成立故選B點(diǎn)評:本題考查空間幾何體的特征,主要考查空間兩點(diǎn)的距離相等的情況,注意結(jié)合外接球和三角形的兩邊與第三邊的關(guān)系,屬于中檔題和易錯題12、C【解析】每天所走的里程構(gòu)成公比為的等比數(shù)列,設(shè)第一天走了里,利用等比數(shù)列基本量代換,直接求解.【詳解】由題意可知:每天所走的里程構(gòu)成公比為的等比數(shù)列.第一天走了里,第4天走了.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由于直線過定點(diǎn),所以當(dāng)時,弦AB的長度最短,然后先求出的長,再利用勾股定理可求出的長,從而可求出三角形ABC的面積【詳解】因?yàn)橹本€恒過定點(diǎn),圓的圓心,半徑為,所以當(dāng)時,弦AB的長度最短,因?yàn)?,所以,所以三角形ABC的面積為,故答案為:14、【解析】根據(jù)兩直線平行可得出關(guān)于實(shí)數(shù)的等式與不等式,即可解得實(shí)數(shù)的值.【詳解】因?yàn)?,則,解得.故答案為:.15、【解析】由題,用累乘法求得通項(xiàng)公式:,則,通過裂項(xiàng)求和即可得出結(jié)果.【詳解】由題,所以累乘法求通項(xiàng)公式:,所以,經(jīng)驗(yàn)證時,符合.所以,則.故答案為:16、【解析】先把原不等式轉(zhuǎn)化為恒成立,構(gòu)造函數(shù),利用恒成立,求出的取值范圍.【詳解】因?yàn)閷θ魏危?,所以對任何,,所以在上為減函數(shù).,,所以恒成立,即對恒成立,所以,所以.即的取值范圍是.故答案為:.【點(diǎn)睛】恒(能)成立問題求參數(shù)的取值范圍:①參變分離,轉(zhuǎn)化為不含參數(shù)的最值問題;②不能參變分離,直接對參數(shù)討論,研究的單調(diào)性及最值;③特別地,個別情況下恒成立,可轉(zhuǎn)換為(二者在同一處取得最值).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,(2)【解析】(1)利用導(dǎo)數(shù)求得的單調(diào)區(qū)間.(2)利用導(dǎo)數(shù)研究的單調(diào)性、極值,從而求得的值.【小問1詳解】由,得,令,得或;令,得.∴函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,.【小問2詳解】∵,∴.當(dāng)時,;當(dāng)時,∴的單調(diào)遞減區(qū)間為,;單調(diào)遞增區(qū)間為.∴的極小值為,極大值為.當(dāng)時,;當(dāng)時,.又∵函數(shù)有且僅有2個零點(diǎn),∴實(shí)數(shù)的值為.18、(1);(2)答案見解析【解析】(1)求出曲線的斜率,切點(diǎn)坐標(biāo),求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)函數(shù)值域斜率的關(guān)系,即可求出,(2)求出導(dǎo)函數(shù)的符號,判斷函數(shù)的單調(diào)性即可得到函數(shù)的極值【詳解】(1)因?yàn)楹瘮?shù)的圖象在點(diǎn)P(0,f(0))處的切線方程是,所以切線斜率是,且,求得,即點(diǎn)又函數(shù),則所以依題意得解得(2)由(1)知所以令,解得或當(dāng),或;當(dāng),所以函數(shù)的單調(diào)遞增區(qū)間是,,單調(diào)遞減區(qū)間是所以當(dāng)變化時,和變化情況如下表:0極大值極小值所以,19、(1);(2).【解析】(1)根據(jù)已知條件求出等比數(shù)列的公比,然后利用等比數(shù)列通項(xiàng)公式求解即可;(2)根據(jù)已知求出數(shù)列的通項(xiàng)公式,再結(jié)合(1)中結(jié)論并利用分組求和法求解即可.【詳解】(1)設(shè)等比數(shù)列公比為q,因?yàn)椋?,因?yàn)槭呛偷牡炔钪许?xiàng),所以,即,解得,所以.故答案為:.(2)因?yàn)?,所以為等差?shù)列,因?yàn)?,,所以公差,?所以.故答案為:.20、(1)證明見解析(2)【解析】(1)以為原點(diǎn),、、分別為軸、軸、軸建立空間直角坐標(biāo)系,證明出,,結(jié)合線面垂直的判定定理可證得結(jié)論成立;(2)利用空間向量法可求得平面與平面夾角的大小.【小問1詳解】證明:底面,,故以為原點(diǎn),、、分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,則、、、、、,所以,,,,則,,即,,又,所以,平面.【小問2詳解】解:知,,,設(shè)平面的法向量為,則,,即,令,可得,設(shè)平面的法向量為,由,,即,令,可得,,因此,平面與平面夾角的大小為.21、(1);(2).【解析】(1)將代入即可求解;(2)首先結(jié)合已知條件分別求出命題和的解,寫出,然后利用充分不必要的特征即可求解.【詳解】(1)由題意可知,,解得,故實(shí)數(shù)的取值范圍為;(2)由,解得或,由,解得,故命題:或;命

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論