黑龍江省雞西市虎林市東方紅林業(yè)局中學(xué)2026屆高一數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第1頁
黑龍江省雞西市虎林市東方紅林業(yè)局中學(xué)2026屆高一數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第2頁
黑龍江省雞西市虎林市東方紅林業(yè)局中學(xué)2026屆高一數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第3頁
黑龍江省雞西市虎林市東方紅林業(yè)局中學(xué)2026屆高一數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第4頁
黑龍江省雞西市虎林市東方紅林業(yè)局中學(xué)2026屆高一數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩7頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

黑龍江省雞西市虎林市東方紅林業(yè)局中學(xué)2026屆高一數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列敘述正確的是()A.三角形的內(nèi)角是第一象限角或第二象限角 B.鈍角是第二象限角C.第二象限角比第一象限角大 D.不相等的角終邊一定不同2.若將函數(shù)的圖象向左平移個單位長度,則平移后圖象的對稱軸為()A. B.C. D.3.直線l:x﹣2y+k=0(k∈R)過點(0,2),則k的值為()A.﹣4 B.4C.2 D.﹣24.已知冪函數(shù)過點則A.,且在上單調(diào)遞減B.,且在單調(diào)遞增C.且在上單調(diào)遞減D.,且在上單調(diào)遞增5.設(shè)集合M=,N=,則MN等于A.{0} B.{0,5}C.{0,1,5} D.{0,-1,-5}6.已知某種樹木的高度(單位:米)與生長年限t(單位:年,)滿足如下的邏輯斯諦(Logistic)增長模型:,其中為自然對數(shù)的底數(shù),設(shè)該樹栽下的時刻為0,則該種樹木生長至3米高時,大約經(jīng)過的時間為()A.2年 B.3年C.4年 D.5年7.函數(shù),則A. B.-1C.-5 D.8.函數(shù)的圖象大致是A. B.C. D.9.=(

)A. B.C. D.10.已知集合,,若,則的值為A.4 B.7C.9 D.10二、填空題:本大題共6小題,每小題5分,共30分。11.已知單位向量與的夾角為,向量的夾角為,則cos=_______12.已知函數(shù)的圖象如圖,則________13.若不等式對一切恒成立,則a的取值范圍是______________.14.函數(shù)f(x)=log2(x2-5),則f(3)=______15.如圖,在長方體ABCD—中,AB=3cm,AD=2cm,,則三棱錐的體積___________.16.大西洋鮭魚每年都要逆流而上游回產(chǎn)地產(chǎn)卵,研究鮭魚的科學(xué)家發(fā)現(xiàn)鮭魚的游速v(單位:)可以表示為,其中L表示鮭魚的耗氧量的單位數(shù),當(dāng)一條鮭魚以的速度游動時,它的耗氧量的單位數(shù)為___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),.(1)若關(guān)于的不等式的解集為,當(dāng)時,求的最小值;(2)若對任意的、,不等式恒成立,求實數(shù)的取值范圍18.已知函數(shù).(1)求函數(shù)的定義域;(2)若對任意恒有,求實數(shù)的取值范圍.19.函數(shù)是定義在上的奇函數(shù),且.(1)確定函數(shù)的解析式;(2)用定義證明在上是增函數(shù).20.某地為踐提出的“綠水青山就是金山銀山”的理念,大力開展植樹造林.假設(shè)一片森林原來的面積為a畝,計劃每年種植一些樹苗,使森林面積的年平均增長率為20%,且x年后森林的面積為y畝(1)列出y與x的函數(shù)解析式并寫出函數(shù)的定義域;(2)為使森林面積至少達到6a畝至少需要植樹造林多少年?參考數(shù)據(jù):21.已知函數(shù)的圖像過點,且圖象上與點最近的一個最低點是.(1)求的解析式;(2)求函數(shù)在區(qū)間上的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】利用象限角、鈍角、終邊相同角的概念逐一判斷即可.【詳解】∵直角不屬于任何一個象限,故A不正確;鈍角屬于是第二象限角,故B正確;由于120°是第二象限角,390°是第一象限角,故C不正確;由于20°與360°+20°不相等,但終邊相同,故D不正確.故選B【點睛】本題考查象限角、象限界角、終邊相同的角的概念,綜合應(yīng)用舉反例、排除等手段,選出正確的答案2、C【解析】由題意得,將函數(shù)的圖象向左平移個單位長度,得到,由,得,即平移后的函數(shù)的對稱軸方程為,故選C3、B【解析】將點(0,2)代入直線l:x﹣2y+k=0(k∈R)的方程中,可解得k的值.【詳解】由直線l:x﹣2y+k=0(k∈R)過點(0,2).所以點的坐標(biāo)滿足直線l的方程即則,故選:B.【點睛】本題考查點在直線上求參數(shù),屬于基礎(chǔ)題.4、A【解析】由冪函數(shù)過點,求出,從而,在上單調(diào)遞減【詳解】冪函數(shù)過點,,解得,,在上單調(diào)遞減故選A.【點睛】本題考查冪函數(shù)解析式的求法,并判斷其單調(diào)性,考查冪函數(shù)的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.5、C【解析】,選C.6、C【解析】根據(jù)題意,列方程,即可求解.【詳解】由題意可得,令,即,解得:t=4.故選:C7、A【解析】f(x)=∴f()=,f[f()]=f()=.故答案為A點睛:由分段函數(shù)得f()=,由此能求出f[f()]的值8、A【解析】因為2、4是函數(shù)的零點,所以排除B、C;因為時,所以排除D,故選A9、A【解析】由題意可得:.本題選擇A選項10、A【解析】可知,或,所以.故選A考點:交集的應(yīng)用二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)題意,由向量的數(shù)量積計算公式可得?、||、||的值,結(jié)合向量夾角計算公式計算可得答案【詳解】根據(jù)題意,單位向量,的夾角為,則?1×1×cos,32,3,則?(32)?(3)=92+22﹣9?,||2=(32)2=92+42﹣12?7,則||,||2=(3)2=922﹣6?7,則||,故cosβ.故答案為【點睛】本題主要考查向量的數(shù)量積的運算和向量的夾角的計算,意在考察學(xué)生對這些知識的掌握水平和分析推理能力.12、8【解析】由圖像可得:過點和,代入解得a、b【詳解】由圖像可得:過點和,則有:,解得∴故答案為:813、【解析】先討論時不恒成立,再根據(jù)二次函數(shù)的圖象開口方向、判別式進行求解.【詳解】當(dāng)時,則化為(不恒成立,舍),當(dāng)時,要使對一切恒成立,需,即,即a的取值范圍是.故答案為:.14、2【解析】利用對數(shù)性質(zhì)及運算法則直接求解【詳解】∵函數(shù)f(x)=log2(x2-5),∴f(3)=log2(9-5)=log24=2故答案為2【點睛】本題考查函數(shù)值的求法,考查函數(shù)性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題15、1【解析】根據(jù)題意,求得棱錐的底面積和高,由體積公式即可求得結(jié)果.【詳解】根據(jù)題意可得,平面,故可得,又因為,故可得.故答案為:.【點睛】本題考查三棱錐體積的求解,涉及轉(zhuǎn)換棱錐的頂點,屬基礎(chǔ)題.16、8100【解析】將代入,化簡即可得答案.【詳解】因為鮭魚的游速v(單位:)可以表示為:,所以,當(dāng)一條鮭魚以的速度游動時,,∴,∴故答案為:8100.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)二次不等式的解集得,再根據(jù)基本不等式求解即可;(2)根據(jù)題意將問題轉(zhuǎn)化為在恒成立,再令,(),分類討論即可求解.【詳解】(1)由關(guān)于的不等式的解集為,所以知∴又∵,∴,取“”時∴即的最小值為,取“”時(2)∵時,,∴根據(jù)題意得:在恒成立記,()①當(dāng)時,由,∴②當(dāng)時,由,∴③當(dāng)時,由,綜上所述,的取值范圍是【點睛】本題的第二問中關(guān)鍵是采用動軸定區(qū)間的方法進行求解,即討論對稱軸在定區(qū)間的左右兩側(cè)以及對稱軸在定區(qū)間上的變化情況,從而確定該函數(shù)的最值.18、(1)答案見解析;(2).【解析】(1)根據(jù)對數(shù)的真數(shù)為正即可求解;(2)對任意恒有對恒成立,參變分離即可求解a的范圍.【小問1詳解】由得,,等價于,∵方程的,當(dāng),即時,恒成立,解得,當(dāng),即時,原不等式即為,解得且;當(dāng),即,又,即時,方程的兩根、,∴解得或,綜上可得當(dāng)時,定義域為,當(dāng)時,定義域為且,當(dāng)時,定義域為或;【小問2詳解】對任意恒有,即對恒成立,∴,而,在上是減函數(shù),∴,所以實數(shù)的取值范圍為.19、(1);(2)證明見解析.【解析】(1)由函數(shù)是定義在上的奇函數(shù),則,解得的值,再根據(jù),解得的值從而求得的解析式;(2)設(shè),化簡可得,然后再利用函數(shù)的單調(diào)性定義即可得到結(jié)果【詳解】解:(1)依題意得∴∴∴(2)證明:任取,∴∵,∴,,,由知,,∴.∴.∴在上單調(diào)遞增.20、(1)(且);(2)10.【解析】(1)直接由題意可得與的函數(shù)解析式;(2)設(shè)為使森林面積至少達到畝,至少需要植樹造林年,則,求解指數(shù)不等式得答案【小問1詳解】森林原來的面積為畝,森林面積的年平均增長率為,年后森林的面積為畝,則(且);【小問2詳解】設(shè)為使森林面積至少達到畝,至少需要植樹造林年,則,,得,即,,即取10,故為使森林面積至少達到畝,至少需要植樹造林10年21、(1);(2).【解析】(1)根據(jù),兩點可求出和周期,再由周期公式即可求出,再由即可求出;(2)根據(jù)求出函數(shù)的值域,再利用換元法令即可求出函數(shù)的取值范圍.【詳解】(1)根據(jù)題意可知,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論