甘肅省會寧縣第五中學2026屆數(shù)學高二上期末教學質量檢測模擬試題含解析_第1頁
甘肅省會寧縣第五中學2026屆數(shù)學高二上期末教學質量檢測模擬試題含解析_第2頁
甘肅省會寧縣第五中學2026屆數(shù)學高二上期末教學質量檢測模擬試題含解析_第3頁
甘肅省會寧縣第五中學2026屆數(shù)學高二上期末教學質量檢測模擬試題含解析_第4頁
甘肅省會寧縣第五中學2026屆數(shù)學高二上期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

甘肅省會寧縣第五中學2026屆數(shù)學高二上期末教學質量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在三棱錐中,,,,若,,則()A. B.C. D.2.三棱柱中,,,,若,則()A. B.C. D.3.彬塔,又稱開元寺塔、彬縣塔,民間稱“雷峰塔”,位于陜西省彬縣城內西南紫薇山下.某同學為測量彬塔的高度,選取了與塔底在同一水平面內的兩個測量基點與,現(xiàn)測得,,,在點測得塔頂?shù)难鼋菫?0°,則塔高()A.30m B.C. D.4.已知,若,是第二象限角,則=()A. B.5C. D.105.某口罩生產商為了檢驗產品質量,從總體編號為001,002,003,…,499,500的500盒口罩中,利用下面的隨機數(shù)表選取10個樣本進行抽檢,選取方法是從下面的隨機數(shù)表第1行第5列的數(shù)字開始由左向右讀取,則選出的第3個樣本的編號為()160011661490844511657388059052274114862298122208075274958035696832506128473975345862A.148 B.116C.222 D.3256.雙曲線的焦距是()A.4 B.C.8 D.7.“”是“直線與直線垂直”的A.充分必要條件 B.充分非必要條件C.必要不充分條件 D.既不充分也不必要條件8.已知點的坐標為(5,2),F(xiàn)為拋物線的焦點,若點在拋物線上移動,當取得最小值時,則點的坐標是A.(1,) B.C. D.9.1852年英國來華傳教士偉烈亞力將《孫子算經》中“物不知數(shù)”問題的解法傳至歐洲,西方人稱之為“中國剩余定理”.現(xiàn)有這樣一個問題:將1到200中被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,構成數(shù)列,則=()A.130 B.132C.140 D.14410.如圖,若斜邊長為的等腰直角(與重合)是水平放置的的直觀圖,則的面積為()A.2 B.C. D.811.命題P:ax2+2x﹣1=0有實數(shù)根,若¬p是假命題,則實數(shù)a的取值范圍是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}12.已知是拋物線上的一點,是拋物線的焦點,若以為始邊,為終邊的角,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.甲乙參加摸球游戲,袋子中裝有3個黑球和1個白球,球的大小、形狀、質量等均一樣,若從袋中有放回地取1個球,再取1個球,若取出的兩個球同色,則甲勝,若取出的兩個球不同色則乙勝,求乙獲勝的概率為_____14.已知拋物線的焦點到準線的距離為,則拋物線的標準方程為___________.(寫出一個即可)15.若,且,則的最小值是____________.16.函數(shù)是R上的單調遞增函數(shù),則a的取值范圍是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)當時,求函數(shù)的單調區(qū)間;(2)設,,求證:;(3)當時,恒成立,求的取值范圍18.(12分)已知的展開式中前三項的二項式系數(shù)之和為46,(1)求n;(2)求展開式中系數(shù)最大的項19.(12分)已知圓:,點A是圓上一動點,點,點是線段的中點.(1)求點的軌跡方程;(2)直線過點且與點的軌跡交于A,兩點,若,求直線的方程.20.(12分)如圖,在四棱錐中,平面ABCD,,,且,,.(1)求證:平面PAC;(2)已知點M是線段PD上的一點,且,當三棱錐的體積為1時,求實數(shù)的值.21.(12分)已知等差數(shù)列中,,,等比數(shù)列中,,(1)求數(shù)列的通項公式;(2)記,求的最小值22.(10分)已知數(shù)列滿足,,,.從①,②這兩個條件中任選一個填在橫線上,并完成下面問題.(1)寫出、,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)空間向量的基本定理及向量的運算法則計算即可得出結果.【詳解】連接,因為,所以,因為,所以,所以,故選:B2、A【解析】利用空間向量線性運算及基本定理結合圖形即可得出答案.【詳解】解:由,,,若,得.故選:A.3、D【解析】在△中有,再應用正弦定理求,再在△中,即可求塔高.【詳解】由題設知:,又,△中,可得,在△中,,則.故選:D4、D【解析】先由誘導公式及同角函數(shù)關系得到,再根據(jù)誘導公式化簡,最后由二倍角公式化簡求值即可.【詳解】∵,∴,∵是第二象限角,∴,∴故選:D5、A【解析】按隨機數(shù)表法逐個讀取數(shù)字即可得到答案.【詳解】根據(jù)隨機數(shù)表法讀取的數(shù)字分別為:116,614(舍),908(舍),445,116(舍),573(舍),880(舍),590(舍),522(舍),741(舍),148,故選出的第3個樣本的編號為148.故選:A.6、C【解析】根據(jù),先求半焦距,再求焦距即可.【詳解】解:由題意可得,,∴,故選:C【點睛】考查求雙曲線的焦距,基礎題.7、B【解析】先由兩直線垂直求出的值,再由充分條件與必要條件的概念,即可得出結果.【詳解】因為直線與直線垂直,則,即,解得或;因此由“”能推出“直線與直線垂直”,反之不能推出,所以“”是“直線與直線垂直”的充分非必要條件.故選B【點睛】本題主要考查命題充分不必要條件的判定,熟記充分條件與必要條件的概念,以及兩直線垂直的判定條件即可,屬于??碱}型.8、D【解析】過作準線的垂線,垂足為,則,當且僅當三點共線時等號成立,此時,故,所以,選D9、A【解析】分析數(shù)列的特點,可知其是等差數(shù)列,寫出其通項公式,進而求得結果,【詳解】被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,這樣的數(shù)構成首項為10,公差為12的等差數(shù)列,所以,故,故選:A10、C【解析】由斜二測還原圖形計算即可求得結果.【詳解】在斜二測直觀圖中,由為等腰直角三角形,,可得,.還原原圖形如圖:則,則.故選:C11、C【解析】根據(jù)是假命題,判斷出是真命題.對分成,和兩種情況,結合方程有實數(shù)根,求得的取值范圍.詳解】┐p是假命題,則p是真命題,∴ax2+2x﹣1=0有實數(shù)根,當a=0時,方程為2x﹣1=0,解得x=0.5,有根,符合題意;當a≠0時,方程有根,等價于△=4+4a≥0,∴a≥﹣1且,綜上所述,a的可能取值為a≥﹣1故選:C【點睛】本小題主要考查根據(jù)命題否定的真假性求參數(shù),屬于基礎題.12、D【解析】設點,取,可得,求出的值,利用拋物線的定義可求得的值.【詳解】設點,其中,則,,取,則,可得,因為,可得,解得,則,因此,.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##0.375【解析】先算出有放回地取兩次的取法數(shù),再算出取出兩球不同色的取法數(shù),根據(jù)古典概型的概率公式計算即可求得答案.【詳解】有放回地取兩球,共有種取法,兩次取球不同色的取法有種,故乙獲勝的概率為,故答案為:14、(答案不唯一)【解析】設出拋物線方程,根據(jù)題意即可得出.【詳解】設拋物線的方程為,根據(jù)題意可得,所以拋物線的標準方程為.故答案為:(答案不唯一).15、【解析】應用基本不等式“1”的代換求a+4b的最小值即可.【詳解】由,有,則,當且僅當,且,即時等號成立,∴最小值為.故答案為:16、【解析】對求導,由題設有恒成立,再利用導數(shù)求的最小值,即可求a的范圍.【詳解】由題設,,又在R上的單調遞增函數(shù),∴恒成立,令,則,∴當時,則遞減;當時,則遞增.∴,故.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)函數(shù)單調遞增區(qū)間為(0,1),單調遞減區(qū)間為(1,+∞)(2)證明見解析(3)[1,+∞)【解析】(1)對函數(shù)求導后,由導數(shù)的正負可求出函數(shù)的單調區(qū)間,(2)由(1)可得,令,則可得,然后利用累加法可證得結論,(3)由,故,然后分和討論的最大值與比較可得結果【小問1詳解】當時,(),則,由,解得;由,解得,因此函數(shù)單調遞增區(qū)間為(0,1),單調遞減區(qū)間為(1,+∞)【小問2詳解】由(1)知,當k=1時,,故令,則,即,所以【小問3詳解】由,故當時,因為,所以,因此恒成立,且的根至多一個,故在(0,1]上單調遞增,所以恒成立當時,令,解得當時,,則單調遞增;當時,,則單調遞減;于是,與恒成立相矛盾綜上,的取值范圍為[1,+∞)【點睛】關鍵點點睛:此題考查導數(shù)的綜合應用,考查利用導數(shù)求函數(shù)的單調區(qū),利用導數(shù)求函數(shù)的最值,利用導數(shù)證明不等式,第(2)問解題的關鍵是利用(1)可得,從而得,然后令,得,最后累加可證得結論,考查數(shù)轉化思想,屬于較難題18、(1)9(2)【解析】(1)根據(jù)要求列出方程,求出的值;(2)求出二項式展開式的通項,列出不等式組,求出的取值范圍,從而求出,得到系數(shù)最大項.【小問1詳解】由題意得:,解得:或,因為,所以(舍去),從而【小問2詳解】二項式的展開式通項為:,則系數(shù)為,要求其最大值,則只要滿足,即9!r!9-r!?2r≥9!r-1!10-r19、(1);(2)x=1或y=1.【解析】(1)設線段中點為,點,用x,y表示,代入方程即可;(2)分l斜率存在和不存在進行討論,根據(jù)弦長求出l方程.【小問1詳解】設線段中點為,點,,,,,,即點C的軌跡方程為.【小問2詳解】直線l的斜率不存在時,l為x=1,代入得,則弦長滿足題意;直線l斜率存在時,設直線l斜率為k,其方程為,即,圓的圓心到l的距離,則;綜上,l為x=1或y=1.20、(1)證明見解析(2)3【解析】(1)證明出,且,從而證明出線面垂直;(2)先用椎體體積公式求出,利用體積之比得到線段之比,從而得到的值.【小問1詳解】證明:∵平面ABCD,且平面ABCD,∴.又因為,且,∴四邊形ABCD為直角梯形.又因為,,易得,,∴,∴.又因為AC,PA是平面PAC的兩條相交直線,∴平面PAC.【小問2詳解】由(1)知且,∴.又∵平面ABCD,.又∵,∴,∴點M到平面ABC的距離為,∴,∴.21、(1)(2)0【解析】(1)利用等差數(shù)列通項公式基本量的計算可求得,進而利用等比數(shù)列的基本量的計算即可求得數(shù)列的通項公式;(2)由(1)可知,則,觀察分析即可解【小問1詳解】設等差數(shù)列的公差為d,所以由,,得所以,從而,,所以,,q=3,所以【小問2詳解】由(1)可知,所以,當n=1時,為正值﹐所以;當n=2時,為負值﹐所以;當時,為正值﹐所以又綜上:當n=3時,有最小值022、(1)條件選擇見解析,,,(2)【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論