2026屆浙江省金華市義烏市數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)測(cè)試試題含解析_第1頁(yè)
2026屆浙江省金華市義烏市數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)測(cè)試試題含解析_第2頁(yè)
2026屆浙江省金華市義烏市數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)測(cè)試試題含解析_第3頁(yè)
2026屆浙江省金華市義烏市數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)測(cè)試試題含解析_第4頁(yè)
2026屆浙江省金華市義烏市數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)測(cè)試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆浙江省金華市義烏市數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)測(cè)試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.二項(xiàng)式展開式中,項(xiàng)的系數(shù)為()A. B. C. D.2.已知雙曲線(,)的左、右頂點(diǎn)分別為,,虛軸的兩個(gè)端點(diǎn)分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.3.三棱錐中,側(cè)棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.4.如圖所示的莖葉圖為高三某班名學(xué)生的化學(xué)考試成績(jī),算法框圖中輸入的,,,,為莖葉圖中的學(xué)生成績(jī),則輸出的,分別是()A., B.,C., D.,5.已知若(1-ai)(3+2i)為純虛數(shù),則a的值為()A. B. C. D.6.設(shè)正項(xiàng)等差數(shù)列的前項(xiàng)和為,且滿足,則的最小值為A.8 B.16 C.24 D.367.雙曲線:(),左焦點(diǎn)到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.8.已知命題,;命題若,則,下列命題為真命題的是()A. B. C. D.9.已知實(shí)數(shù),滿足約束條件,則目標(biāo)函數(shù)的最小值為A. B.C. D.10.在平面直角坐標(biāo)系中,已知點(diǎn),,若動(dòng)點(diǎn)滿足,則的取值范圍是()A. B.C. D.11.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.3 C. D.412.2020年是脫貧攻堅(jiān)決戰(zhàn)決勝之年,某市為早日實(shí)現(xiàn)目標(biāo),現(xiàn)將甲、乙、丙、丁4名干部派遺到、、三個(gè)貧困縣扶貧,要求每個(gè)貧困縣至少分到一人,則甲被派遣到縣的分法有()A.6種 B.12種 C.24種 D.36種二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列{an}的前n項(xiàng)和為Sn,向量(4,﹣n),(Sn,n+3).若⊥,則數(shù)列{}前2020項(xiàng)和為_____14.已知正方形邊長(zhǎng)為,空間中的動(dòng)點(diǎn)滿足,,則三棱錐體積的最大值是______.15.已知雙曲線(a>0,b>0)的兩個(gè)焦點(diǎn)為、,點(diǎn)P是第一象限內(nèi)雙曲線上的點(diǎn),且,tan∠PF2F1=﹣2,則雙曲線的離心率為_____.16.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差________,通項(xiàng)公式________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知不等式對(duì)于任意的恒成立.(1)求實(shí)數(shù)m的取值范圍;(2)若m的最大值為M,且正實(shí)數(shù)a,b,c滿足.求證.18.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點(diǎn)縱坐標(biāo)伸長(zhǎng)到原來的2倍(橫坐標(biāo)不變)得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)寫出的極坐標(biāo)方程與直線的直角坐標(biāo)方程;(2)曲線上是否存在不同的兩點(diǎn),(以上兩點(diǎn)坐標(biāo)均為極坐標(biāo),,),使點(diǎn)、到的距離都為3?若存在,求的值;若不存在,請(qǐng)說明理由.19.(12分)已知函數(shù)(為實(shí)常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實(shí)數(shù)的取值范圍.20.(12分)已知在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為.(1)求直線的極坐標(biāo)方程;(2)若直線與曲線交于,兩點(diǎn),求的面積.21.(12分)已知在等比數(shù)列中,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列前項(xiàng)的和.22.(10分)為了解網(wǎng)絡(luò)外賣的發(fā)展情況,某調(diào)查機(jī)構(gòu)從全國(guó)各城市中抽取了100個(gè)相同等級(jí)地城市,分別調(diào)查了甲乙兩家網(wǎng)絡(luò)外賣平臺(tái)(以下簡(jiǎn)稱外賣甲、外賣乙)在今年3月的訂單情況,得到外賣甲該月訂單的頻率分布直方圖,外賣乙該月訂單的頻數(shù)分布表,如下圖表所示.訂單:(單位:萬(wàn)件)頻數(shù)1223訂單:(單位:萬(wàn)件)頻數(shù)402020102(1)現(xiàn)規(guī)定,月訂單不低于13萬(wàn)件的城市為“業(yè)績(jī)突出城市”,填寫下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為“是否為業(yè)績(jī)突出城市”與“選擇網(wǎng)絡(luò)外賣平臺(tái)”有關(guān).業(yè)績(jī)突出城市業(yè)績(jī)不突出城市總計(jì)外賣甲外賣乙總計(jì)(2)由頻率分布直方圖可以認(rèn)為,外賣甲今年3月在全國(guó)各城市的訂單數(shù)(單位:萬(wàn)件)近似地服從正態(tài)分布,其中近似為樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),的值已求出,約為3.64,現(xiàn)把頻率視為概率,解決下列問題:①?gòu)娜珖?guó)各城市中隨機(jī)抽取6個(gè)城市,記為外賣甲在今年3月訂單數(shù)位于區(qū)間的城市個(gè)數(shù),求的數(shù)學(xué)期望;②外賣甲決定在今年3月訂單數(shù)低于7萬(wàn)件的城市開展“訂外賣,搶紅包”的營(yíng)銷活動(dòng)來提升業(yè)績(jī),據(jù)統(tǒng)計(jì),開展此活動(dòng)后城市每月外賣訂單數(shù)將提高到平均每月9萬(wàn)件的水平,現(xiàn)從全國(guó)各月訂單數(shù)不超過7萬(wàn)件的城市中采用分層抽樣的方法選出100個(gè)城市不開展?fàn)I銷活動(dòng),若每按一件外賣訂單平均可獲純利潤(rùn)5元,但每件外賣平均需送出紅包2元,則外賣甲在這100個(gè)城市中開展?fàn)I銷活動(dòng)將比不開展?fàn)I銷活動(dòng)每月多盈利多少萬(wàn)元?附:①參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828②若,則,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

寫出二項(xiàng)式的通項(xiàng)公式,再分析的系數(shù)求解即可.【詳解】二項(xiàng)式展開式的通項(xiàng)為,令,得,故項(xiàng)的系數(shù)為.故選:D【點(diǎn)睛】本題主要考查了二項(xiàng)式定理的運(yùn)算,屬于基礎(chǔ)題.2、D【解析】

根據(jù)題意畫出幾何關(guān)系,由四邊形的內(nèi)切圓面積求得半徑,結(jié)合四邊形面積關(guān)系求得與等量關(guān)系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫出幾何關(guān)系如下圖所示:設(shè)四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故焦距的最小值為.故選:D【點(diǎn)睛】本題考查了雙曲線的定義及其性質(zhì)的簡(jiǎn)單應(yīng)用,圓錐曲線與基本不等式綜合應(yīng)用,屬于中檔題.3、B【解析】由題,側(cè)棱底面,,,,則根據(jù)余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點(diǎn)睛:本題考查的知識(shí)點(diǎn)是球內(nèi)接多面體,熟練掌握球的半徑公式是解答的關(guān)鍵.4、B【解析】

試題分析:由程序框圖可知,框圖統(tǒng)計(jì)的是成績(jī)不小于80和成績(jī)不小于60且小于80的人數(shù),由莖葉圖可知,成績(jī)不小于80的有12個(gè),成績(jī)不小于60且小于80的有26個(gè),故,.考點(diǎn):程序框圖、莖葉圖.5、A【解析】

根據(jù)復(fù)數(shù)的乘法運(yùn)算法則化簡(jiǎn)可得,根據(jù)純虛數(shù)的概念可得結(jié)果.【詳解】由題可知原式為,該復(fù)數(shù)為純虛數(shù),所以.故選:A【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算和復(fù)數(shù)的分類,屬基礎(chǔ)題.6、B【解析】

方法一:由題意得,根據(jù)等差數(shù)列的性質(zhì),得成等差數(shù)列,設(shè),則,,則,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,從而的最小值為16,故選B.方法二:設(shè)正項(xiàng)等差數(shù)列的公差為d,由等差數(shù)列的前項(xiàng)和公式及,化簡(jiǎn)可得,即,則,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,從而的最小值為16,故選B.7、B【解析】

首先求得雙曲線的一條漸近線方程,再利用左焦點(diǎn)到漸近線的距離為2,列方程即可求出,進(jìn)而求出漸近線的方程.【詳解】設(shè)左焦點(diǎn)為,一條漸近線的方程為,由左焦點(diǎn)到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點(diǎn)睛】本題考查雙曲線的漸近線的方程,考查了點(diǎn)到直線的距離公式,屬于中檔題.8、B【解析】解:命題p:?x>0,ln(x+1)>0,則命題p為真命題,則¬p為假命題;取a=﹣1,b=﹣2,a>b,但a2<b2,則命題q是假命題,則¬q是真命題.∴p∧q是假命題,p∧¬q是真命題,¬p∧q是假命題,¬p∧¬q是假命題.故選B.9、B【解析】

作出不等式組對(duì)應(yīng)的平面區(qū)域,目標(biāo)函數(shù)的幾何意義為動(dòng)點(diǎn)到定點(diǎn)的斜率,利用數(shù)形結(jié)合即可得到的最小值.【詳解】解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:目標(biāo)函數(shù)的幾何意義為動(dòng)點(diǎn)到定點(diǎn)的斜率,當(dāng)位于時(shí),此時(shí)的斜率最小,此時(shí).故選B.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用以及兩點(diǎn)之間的斜率公式的計(jì)算,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.10、D【解析】

設(shè)出的坐標(biāo)為,依據(jù)題目條件,求出點(diǎn)的軌跡方程,寫出點(diǎn)的參數(shù)方程,則,根據(jù)余弦函數(shù)自身的范圍,可求得結(jié)果.【詳解】設(shè),則∵,∴∴∴為點(diǎn)的軌跡方程∴點(diǎn)的參數(shù)方程為(為參數(shù))則由向量的坐標(biāo)表達(dá)式有:又∵∴故選:D【點(diǎn)睛】考查學(xué)生依據(jù)條件求解各種軌跡方程的能力,熟練掌握代數(shù)式轉(zhuǎn)換,能夠利用三角換元的思想處理軌跡中的向量乘積,屬于中檔題.求解軌跡方程的方法有:①直接法;②定義法;③相關(guān)點(diǎn)法;④參數(shù)法;⑤待定系數(shù)法11、C【解析】

首先把三視圖轉(zhuǎn)換為幾何體,該幾何體為由一個(gè)三棱柱體,切去一個(gè)三棱錐體,由柱體、椎體的體積公式進(jìn)一步求出幾何體的體積.【詳解】解:根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為由一個(gè)三棱柱體,切去一個(gè)三棱錐體,如圖所示:故:.故選:C.【點(diǎn)睛】本題考查了由三視圖求幾何體的體積、需熟記柱體、椎體的體積公式,考查了空間想象能力,屬于基礎(chǔ)題.12、B【解析】

分成甲單獨(dú)到縣和甲與另一人一同到縣兩種情況進(jìn)行分類討論,由此求得甲被派遣到縣的分法數(shù).【詳解】如果甲單獨(dú)到縣,則方法數(shù)有種.如果甲與另一人一同到縣,則方法數(shù)有種.故總的方法數(shù)有種.故選:B【點(diǎn)睛】本小題主要考查簡(jiǎn)答排列組合的計(jì)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由已知可得?4Sn﹣n(n+3)=0,可得Sn,n=1時(shí),a1=S1=1.當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1.可得:2().利用裂項(xiàng)求和方法即可得出.【詳解】∵⊥,∴?4Sn﹣n(n+3)=0,∴Sn,n=1時(shí),a1=S1=1.當(dāng)n≥2時(shí),an=Sn﹣Sn﹣1.,滿足上式,.∴2().∴數(shù)列{}前2020項(xiàng)和為2(1)=2(1).故答案為:.【點(diǎn)睛】本題考查了向量垂直與數(shù)量積的關(guān)系、數(shù)列遞推關(guān)系、裂項(xiàng)求和方法,考查了推理能力與計(jì)算能力,屬于中檔題.14、【解析】

以為原點(diǎn),為軸,為軸,過作平面的垂線為軸建立空間直角坐標(biāo)系,設(shè)點(diǎn),根據(jù)題中條件得出,進(jìn)而可求出的最大值,由此能求出三棱錐體積的最大值.【詳解】以為原點(diǎn),為軸,為軸,過作平面的垂線為軸建立空間直角坐標(biāo)系,則,,,設(shè)點(diǎn),空間中的動(dòng)點(diǎn)滿足,,所以,整理得,,當(dāng),時(shí),取最大值,所以,三棱錐的體積為.因此,三棱錐體積的最大值為.故答案為:.【點(diǎn)睛】本題考查三棱錐體積的最大值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.15、【解析】

根據(jù)正弦定理得,根據(jù)余弦定理得2PF1?PF2cos∠F1PF23,聯(lián)立方程得到,計(jì)算得到答案.【詳解】∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,①又∵,tan∠PF2F1=﹣2,∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,△PF1F2中用余弦定理,得2PF1?PF2cos∠F1PF23,②①②聯(lián)解,得,可得,∴雙曲線的,結(jié)合,得離心率.故答案為:.【點(diǎn)睛】本題考查了雙曲線離心率,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.16、2【解析】

直接利用等差數(shù)列公式計(jì)算得到答案.【詳解】,,解得,,故.故答案為:2;.【點(diǎn)睛】本題考查了等差數(shù)列的基本計(jì)算,意在考查學(xué)生的計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】

(1)法一:,,得,則,由此可得答案;法二:由題意,令,易知是偶函數(shù),且時(shí)為增函數(shù),由此可得出答案;(2)由(1)知,,即,結(jié)合“1”的代換,利用基本不等式即可證明結(jié)論.【詳解】解:(1)法一:(當(dāng)且僅當(dāng)時(shí)取等號(hào)),又(當(dāng)且僅當(dāng)時(shí)取等號(hào)),所以(當(dāng)且僅當(dāng)時(shí)取等號(hào)),由題意得,則,解得,故的取值范圍是;法二:因?yàn)閷?duì)于任意恒有成立,即,令,易知是偶函數(shù),且時(shí)為增函數(shù),所以,即,則,解得,故的取值范圍是;(2)由(1)知,,即,∴,故不等式成立.【點(diǎn)睛】本題主要考查絕對(duì)值不等式的恒成立問題,考查基本不等式的應(yīng)用,屬于中檔題.18、(1),(2)存在,【解析】

(1)先求得曲線的普通方程,利用伸縮變換的知識(shí)求得曲線的直角坐標(biāo)方程,再轉(zhuǎn)化為極坐標(biāo)方程.根據(jù)極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化公式,求得直線的直角坐標(biāo)方程.(2)求得曲線的圓心和半徑,計(jì)算出圓心到直線的距離,結(jié)合圖像判斷出存在符合題意,并求得的值.【詳解】(1)曲線的普通方程為,縱坐標(biāo)伸長(zhǎng)到原來的2倍,得到曲線的直角坐標(biāo)方程為,其極坐標(biāo)方程為,直線的直角坐標(biāo)方程為.(2)曲線是以為圓心,為半徑的圓,圓心到直線的距離.∴由圖像可知,存在這樣的點(diǎn),,則,且點(diǎn)到直線的距離,∴,∴.【點(diǎn)睛】本小題主要考查坐標(biāo)變換,考查直線和圓的位置關(guān)系,考查極坐標(biāo)方程和直角坐標(biāo)方程相互轉(zhuǎn)化,考查參數(shù)方程化為普通方程,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.19、(1)見解析(2)【解析】

(1)分類討論的值,利用導(dǎo)數(shù)證明單調(diào)性即可;(2)利用導(dǎo)數(shù)分別得出,,時(shí),的最小值,即可得出實(shí)數(shù)的取值范圍.【詳解】(1),.當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞增;當(dāng)即時(shí),時(shí),,在上單調(diào)遞減;時(shí),,在上單調(diào)遞增;當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞減;(2)當(dāng)時(shí),因?yàn)樵谏蠁握{(diào)遞增,所以的最小值為,所以當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增所以的最小值為.因?yàn)?,所以?所以,所以.當(dāng)時(shí),在上單調(diào)遞減所以的最小值為因?yàn)?,所以,所以,綜上,.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)研究函數(shù)的存在性問題,屬于中檔題.20、(1)(2)【解析】

(1)先消去參數(shù),化為直角坐標(biāo)方程,再利用求解.(2)直線與曲線方程聯(lián)立,得,求得弦長(zhǎng)和點(diǎn)到直線的距離,再求的面積.【詳解】(1)由已知消去得,則,所以,所以直線的極坐標(biāo)方程為.(2)由,得,設(shè),兩點(diǎn)對(duì)應(yīng)的極分別為,,則,,所以,又點(diǎn)到直線的距離所以【點(diǎn)睛】本題主要考查參數(shù)方程、直角坐標(biāo)方程及極坐標(biāo)方程的轉(zhuǎn)化和直線與曲線的位置關(guān)系,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.21、(1)(2)【解析】

(1)由基本量法,求出公比后可得通項(xiàng)公式;(2)求出,用裂項(xiàng)相消法求和.【詳解】解:(1)設(shè)等比數(shù)列的公比為又因?yàn)?,所以解得(舍)或所以,即?)據(jù)(1)求解知,,所以所以【點(diǎn)睛】本題考查求等比數(shù)列的通項(xiàng)公

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論