河北省唐山市唐山第一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第1頁
河北省唐山市唐山第一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第2頁
河北省唐山市唐山第一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第3頁
河北省唐山市唐山第一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第4頁
河北省唐山市唐山第一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河北省唐山市唐山第一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“?x0∈(0,+∞),”的否定是()A.?x∈(﹣∞,0),2x+sinx≥0B.?x∈(0,+∞),2x+sinx≥0C.?x0∈(0,+∞),D.?x0∈(﹣∞,0),2.內(nèi)角、、的對邊分別為、、,若,,,則()A. B.C. D.3.以下說法:①將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;②設(shè)有一個回歸方程,變量增加1個單位時,平均增加5個單位③線性回歸方程必過④設(shè)具有相關(guān)關(guān)系的兩個變量的相關(guān)系數(shù)為,那么越接近于0,之間的線性相關(guān)程度越高;⑤在一個列聯(lián)表中,由計算得的值,那么的值越大,判斷兩個變量間有關(guān)聯(lián)的把握就越大。其中錯誤的個數(shù)是()A.0 B.1C.2 D.34.設(shè)等差數(shù)列前n項和是,若,則的通項公式可以是()A. B.C. D.5.已知命題,,則p的否定是()A. B.C. D.6.下列命題中,一定正確的是()A.若且,則a>0,b<0B.若a>b,b≠0,則>1C.若a>b且a+c>b+d,則c>dD.若a>b且ac>bd,則c>d7.已知為兩條不同的直線,為兩個不同的平面,則下列結(jié)論正確的是()A.若,則B.若,則C.若,則D.若,則8.古希臘數(shù)學(xué)家歐幾里得在《幾何原本》中描述了圓錐曲線共性,并給出了圓錐曲線的統(tǒng)一定義,只可惜對這一定義歐幾里得沒有給出證明.經(jīng)過了500年,到了3世紀(jì),希臘數(shù)學(xué)家帕普斯在他的著作《數(shù)學(xué)匯篇》中,完善了歐幾里得關(guān)于圓錐曲線的統(tǒng)一定義,并對這一定義進(jìn)行了證明.他指出,到定點的距離與到定直線的距離的比是常數(shù)的點的軌跡叫做圓錐曲線;當(dāng)時,軌跡為橢圓;當(dāng)時,軌跡為拋物線;當(dāng)時,軌跡為雙曲線.現(xiàn)有方程表示的曲線是雙曲線,則的取值范圍為()A. B.C. D.9.在中,角A,B,C所對的邊分別為a,b,c,,,則()A. B.1C.2 D.410.不等式的解集為()A. B.C.或 D.或11.已知、,直線,,且,則的最小值為()A. B.C. D.12.若存在,使得不等式成立,則實數(shù)k的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的準(zhǔn)線方程是______14.若圓的一條直徑的端點是、,則此圓的方程是_______15.若拋物線的焦點與橢圓的右焦點重合,則實數(shù)m的值為______.16.若方程表示的曲線是圓,則實數(shù)的k取值范圍是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知在長方形ABCD中,AD=2AB=2,點E是AD的中點,沿BE折起平面ABE,使平面ABE⊥平面BCDE.(1)求證:在四棱錐A-BCDE中,AB⊥AC.(2)在線段AC上是否存在點F,使二面角A-BE-F的余弦值為?若存在,找出點F的位置;若不存在,說明理由.18.(12分)已知橢圓的左焦點為,上頂點為,直線與橢圓的另一個交點為A(1)求點A的坐標(biāo);(2)過點且斜率為的直線與橢圓交于,兩點(均與A,不重合),過點與軸垂直的直線分別交直線,于點,,證明:點,關(guān)于軸對稱19.(12分)某種機(jī)械設(shè)備隨著使用年限的增加,它的使用功能逐漸減退,使用價值逐年減少,通常把它使用價值逐年減少的“量”換算成費(fèi)用,稱之為“失效費(fèi)”.某種機(jī)械設(shè)備的使用年限(單位:年)與失效費(fèi)(單位:萬元)的統(tǒng)計數(shù)據(jù)如下表所示:使用年限(單位:年)1234567失效費(fèi)(單位:萬元)2.903.303.604.404.805.205.90(1)由上表數(shù)據(jù)可知,可用線性回歸模型擬合與的關(guān)系.請用相關(guān)系數(shù)加以說明;(精確到0.01)(2)求出關(guān)于的線性回歸方程,并估算該種機(jī)械設(shè)備使用8年的失效費(fèi)參考公式:相關(guān)系數(shù)線性回歸方程中斜率和截距最小二乘估計計算公式:,參考數(shù)據(jù):,,20.(12分)某校高二年級全體學(xué)生參加了一次數(shù)學(xué)測試,學(xué)校利用簡單隨機(jī)抽樣方法從甲班、乙班各抽取五名同學(xué)的數(shù)學(xué)測試成績(單位:分)得到如下莖葉圖,若甲、乙兩班數(shù)據(jù)的中位數(shù)相等且平均數(shù)也相等.(1)求出莖葉圖中m和n的值:(2)若從86分以上(不含86分)的同學(xué)中隨機(jī)抽出兩名,求此兩人都來自甲班的概率.21.(12分)“中山橋”是位于蘭州市中心,橫跨黃河之上的一座百年老橋,如圖①,橋上有五個拱形橋架緊密相連,每個橋架的內(nèi)部有一個水平橫梁和八個與橫梁垂直的立柱,氣勢宏偉,素有“天下黃河第一橋”之稱.如圖②,一個拱形橋架可以近似看作是由等腰梯形和其上方的拋物線(部分)組成,建立如圖所示的平面直角坐標(biāo)系,已知,,,,立柱.(1)求立柱及橫梁的長;(2)求拋物線的方程和橋梁的拱高.22.(10分)記為數(shù)列的前項和,且(1)求的通項公式;(2)設(shè),求數(shù)列的前項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用特稱命題的否定是全稱命題,寫出結(jié)果即可【詳解】命題“?x0∈(0,+∞),”的否定是“?x∈(0,+∞),2x+sinx≥0”故選:B2、C【解析】利用正弦定理可求得邊的長.【詳解】由正弦定理得.故選:C.3、C【詳解】方差反映一組數(shù)據(jù)的波動大小,將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變,故①正確;一個回歸方程,變量增加1個單位時,平均減少5個單位,故②不正確;線性回歸方程必過樣本中心點,故③正確;根據(jù)線性回歸分析中相關(guān)系數(shù)的定義:在線性回歸分析中,相關(guān)系數(shù)為r,越接近于1,相關(guān)程度越大,故④不正確;對于觀察值來說,越大,“x與y有關(guān)系”的可信程度越大,故⑤正確.故選:C【點睛】本題主要考查用樣本估計總體、線性回歸方程、獨(dú)立性檢驗的基本思想.4、D【解析】根據(jù)題意可得公差的范圍,再逐一分析各個選項即可得出答案.【詳解】解:設(shè)等差數(shù)列的公差為,由,得,所以,故AB錯誤;若,則,與題意矛盾,故C錯誤;若,則,符合題意.故選:D.5、A【解析】直接根據(jù)全稱命題的否定寫出結(jié)論.【詳解】命題,為全稱命題,故p的否定是:.故選:A【點睛】全稱量詞命題的否定是特稱(存在)量詞命題,特稱(存在)量詞命題的否定是全稱量詞命題6、A【解析】結(jié)合不等式的性質(zhì)確定正確答案.【詳解】A選項,若且,則,所以A選項正確.B選項,若,則,所以B選項錯誤.C選項,如,但,所以C選項錯誤.D選項,如,但,所以D選項錯誤.故選:A7、D【解析】根據(jù)空間里面直線與平面、平面與平面位置關(guān)系的相關(guān)定理逐項判斷即可.【詳解】A,若,則或異面,故該選項錯誤;B,若,則或相交,故該選項錯誤;C,若,則α,β不一定垂直,故該選項錯誤;D,若,則利用面面垂直的性質(zhì)可得,故該選項正確.故選:D.8、C【解析】對方程進(jìn)行化簡可得雙曲線上一點到定點與定直線之比為常數(shù),進(jìn)而可得結(jié)果.【詳解】已知方程可以變形為,即,∴其表示雙曲線上一點到定點與定直線之比為常數(shù),又由,可得,故選:C.9、C【解析】直接運(yùn)用正弦定理可得,解得詳解】由正弦定理,得,所以故選:C10、A【解析】先將分式不等式轉(zhuǎn)化為一元二次不等式,然后求解即可【詳解】由,得,解得,所以原不等式的解集為,故選:A11、D【解析】先由,可得,變形得,所以,化簡后利用基本不等式求解即可【詳解】因為、,直線,,且,所以,即,所以,所以,所以,當(dāng)且僅當(dāng),即時,取等號,所以的最小值為,故選:D12、C【解析】根據(jù)題意和一元二次不等式能成立可得對于,成立,令,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,即可求出.【詳解】存在,不等式成立,則,能成立,即對于,成立,令,,則,令,所以當(dāng),單調(diào)遞增,當(dāng),單調(diào)遞減,又,所以f(x)>-3,所以.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意可得p=4,所以準(zhǔn)線方程,填14、【解析】先設(shè)圓上任意一點的坐標(biāo),然后利用直徑對應(yīng)的圓周角為直角,再利用向量垂直建立方程即可【詳解】設(shè)圓上任意一點的坐標(biāo)為可得:,則有:,即解得:故答案為:15、【解析】分別求出橢圓和拋物線的焦點坐標(biāo)即可出值.【詳解】由橢圓方程可知,,,則,即橢圓的右焦點的坐標(biāo)為,拋物線的焦點坐標(biāo)為,∵拋物線的焦點與橢圓的右焦點重合,∴,即,故答案為:.16、【解析】根據(jù)二元二次方程表示圓的條件求解【詳解】由題意,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)點F為線段AC的中點【解析】(1)由平面幾何知識證得CE⊥BE,再根據(jù)面面垂直的性質(zhì),線面垂直的判定和性質(zhì)可得證;(2)取BE的中點O,以O(shè)為原點,分別以的方向為x軸,y軸,z軸建立空間直角坐標(biāo)系,假設(shè)在線段AC上存在點F,設(shè)=λ,運(yùn)用二面角的向量求解方法可求得,可得點F的位置.【小問1詳解】證明:因為在長方形ABCD中,AD=2AB=2,點E是AD的中點,所以BE=CE=2,又BC=2,所以,所以CE⊥BE,又平面ABE⊥平面BCDE,面面,所以CE⊥平面ABE,所以AB⊥CE.又AB⊥AE,,所以AB⊥平面AEC,即得AB⊥AC.【小問2詳解】解:存在點F,F(xiàn)為線段AC的中點.由(1)得△ABE和△BEC均為等腰直角三角形,取BE的中點O,則,又平面ABE⊥平面BCDE,面面,所以面,以O(shè)為原點,分別以的方向為x軸,y軸,z軸建立空間直角坐標(biāo)系,如圖所示,取平面ABE的一個法向量為.假設(shè)在線段AC上存在點F,使二面角A-BE-F的余弦值為.則A(0,0,1),B(1,0,0),C(-1,2,0),E(-1,0,0),=(1,0,1),=(-1,2,-1),設(shè)=λ,則+λ=(1-λ,2λ,1-λ),又=(2,0,0),設(shè)平面BEF的法向量為,可得,即得,可取y=1,得,所以,解得λ=,即當(dāng)點F為線段AC的中點時,二面角A-BE-F的余弦值為.18、(1)(2)證明見解析【解析】(1)先求出直線的方程,聯(lián)立直線與橢圓,求出A點坐標(biāo);(2)設(shè)出直線方程,聯(lián)立橢圓方程,用韋達(dá)定理得到兩根之和,兩根之積,求出兩點的縱坐標(biāo),證明出,即可證明關(guān)于軸對稱.【小問1詳解】由題意得,,所以直線方程為,與橢圓方程聯(lián)立得解得或,當(dāng)時,,所以【小問2詳解】設(shè),,的方程為,聯(lián)立消去得,則,直線的方程為,設(shè),則,直線的方程為,設(shè),則,因為,即,所以點,關(guān)于軸對稱19、(1)答案見解析;(2);失效費(fèi)為6.3萬元【解析】(1)根據(jù)相關(guān)系數(shù)公式計算出相關(guān)系數(shù)可得結(jié)果;(2)根據(jù)公式求出和可得關(guān)于的線性回歸方程,再代入可求出結(jié)果.【詳解】(1)由題意,知,,∴結(jié)合參考數(shù)據(jù)知:因為與的相關(guān)系數(shù)近似為0.99,所以與的線性相關(guān)程度相當(dāng)大,從而可以用線性回歸模型擬合與的關(guān)系(2)∵,∴∴關(guān)于的線性回歸方程為,將代入線性回歸方程得萬元,∴估算該種機(jī)械設(shè)備使用8年的失效費(fèi)為6.3萬元20、(1),(2)【解析】(1)根據(jù)莖葉圖得甲班中位數(shù)為,由此能求出,根據(jù)由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,從86分以上(不含86分)的同學(xué)中隨機(jī)抽出兩名,用列舉法寫出基本事件總數(shù),再利用古典概型的概率計算公式即可求解.【小問1詳解】根據(jù)莖葉圖可知1班中位數(shù)為86,則,又∵,且故【小問2詳解】由(1)可知,甲班86分以上有2人,乙班86以上有2人設(shè)甲班86分以上2人為,,乙班86分以上2人為,,從中任取兩名同學(xué)共有,,,,,共有6組基本事件,且每組出現(xiàn)都是等可能的記:“從86分以上(不含86分)的同學(xué)中隨機(jī)抽出兩名,兩人都來自甲班”為事件M,事件M包括:共1個基本事件,由古典概型的計算概率的公式知∴所以兩人都來自甲班的概率為21、(1),(2),【解析】(1)根據(jù)梯形的幾何性質(zhì),即可求解;(2)表示出M,N的坐標(biāo),代入拋物線方程中,結(jié)合條件解得p值,繼而求得拱高.【小問1詳解】由題意,知,因為ABFM是等腰梯形,由對稱性知:,所以,【小問2詳解】由(1)知,所以點M的橫坐標(biāo)為-18,則N的橫坐標(biāo)為-(18-5)=-13.設(shè)點M,N的縱坐標(biāo)分別為y1,y2,由圖形,知設(shè)拋物線的方程為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論