2026屆高三數(shù)學(xué)二輪復(fù)習(xí)課件:板塊一 三角函數(shù)與平面向量 提優(yōu)點1 極化恒等式與等和線_第1頁
2026屆高三數(shù)學(xué)二輪復(fù)習(xí)課件:板塊一 三角函數(shù)與平面向量 提優(yōu)點1 極化恒等式與等和線_第2頁
2026屆高三數(shù)學(xué)二輪復(fù)習(xí)課件:板塊一 三角函數(shù)與平面向量 提優(yōu)點1 極化恒等式與等和線_第3頁
2026屆高三數(shù)學(xué)二輪復(fù)習(xí)課件:板塊一 三角函數(shù)與平面向量 提優(yōu)點1 極化恒等式與等和線_第4頁
2026屆高三數(shù)學(xué)二輪復(fù)習(xí)課件:板塊一 三角函數(shù)與平面向量 提優(yōu)點1 極化恒等式與等和線_第5頁
已閱讀5頁,還剩44頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

板塊一三角函數(shù)與平面向量提優(yōu)點1極化恒等式與等和線【

知識拓展

(1)當(dāng)?shù)群途€恰為直線AB時,k=1;(2)當(dāng)?shù)群途€在O點和直線AB之間時,k∈(0,1);(3)當(dāng)直線AB在O點和等和線之間時,k∈(1,+∞);(4)當(dāng)?shù)群途€過O點時,k=0.精準(zhǔn)強化練類型一利用極化恒等式求向量的數(shù)量積類型二利用等和線求基底系數(shù)和的值類型突破

類型一利用極化恒等式求向量的數(shù)量積例13

在三角形中利用極化恒等式求平面向量數(shù)量積的步驟(1)取第三邊的中點,連接向量的起點與終點;(2)利用極化恒等式將數(shù)量積轉(zhuǎn)化為中線長與第三邊長的一半的平方差;(3)利用平面幾何法或正、余弦定理求中線及第三邊的長度,從而求出數(shù)量積.如需進一步求數(shù)量積的范圍,可以用點到直線的距離最小,或用三角形兩邊之和大于第三邊,或用基本不等式等求得中線長的最值(范圍).注:對于不共起點或不共終點的向量需通過平移轉(zhuǎn)化為共起點(終點)的向量,再利用極化恒等式.規(guī)律方法

訓(xùn)練1-6如圖,取BC中點D,

9

類型二利用等和線求基底系數(shù)和的值例2

法一由題意作圖如圖.

利用等和線求基底系數(shù)和的步驟(1)確定值為1的等和線;(2)平移該線,作出滿足條件的等和線;(3)從長度比或點的位置兩個角度,計算滿足條件的等和線的值.規(guī)律方法√

訓(xùn)練2

【精準(zhǔn)強化練】√

因為C,F,G三點共線,所以λ+μ=1.故選A.√

如圖,取AB中點為Q,

2

法一設(shè)λ+μ=k,如圖,當(dāng)C位于點A或點B時,A,B,C三點共線,所以k=λ+μ=1;

法二設(shè)圓O的半徑為1,由已知可設(shè)O為坐標(biāo)原點,OB所在直線為x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論