版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2026屆遼寧省大連市第十六中學(xué)數(shù)學(xué)高二上期末綜合測試模擬試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列是公差為等差數(shù)列,,則()A.1 B.3C.6 D.92.若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為A. B.C. D.3.當(dāng)我們停放自行車時(shí),只要將自行車旁的撐腳放下,自行車就穩(wěn)了,這用到了()A.三點(diǎn)確定一平面 B.不共線三點(diǎn)確定一平面C.兩條相交直線確定一平面 D.兩條平行直線確定一平面4.已知拋物線:,焦點(diǎn)為,若過的直線交拋物線于、兩點(diǎn),、到拋物線準(zhǔn)線的距離分別為3、7,則長為A.3 B.4C.7 D.105.已知拋物線的焦點(diǎn)為F,過F作斜率為2的直線l與拋物線交于A,B兩點(diǎn),若弦的中點(diǎn)到拋物線準(zhǔn)線的距離為3,則拋物線的方程為()A. B.C. D.6.如圖所示,在三棱錐中,E,F(xiàn)分別是AB,BC的中點(diǎn),則等于()A. B.C. D.7.橢圓與雙曲線有公共的焦點(diǎn)、,與在第一象限內(nèi)交于點(diǎn),是以線段為底邊的等腰三角形,若橢圓的離心率的范圍是,則雙曲線的離心率取值范圍是()A. B.C. D.8.若命題p為真命題,命題q為假命題,則下列命題為真命題的是()A. B.C. D.9.在的展開式中,的系數(shù)為()A. B.5C. D.1010.已知數(shù)列的通項(xiàng)公式是,則()A10100 B.-10100C.5052 D.-505211.展開式中第3項(xiàng)的二項(xiàng)式系數(shù)為()A.6 B.C.24 D.12.在長方體中,,,則與平面所成的角的正弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的漸近線方程是____________14.已知數(shù)列的前n項(xiàng)和為,則取得最大值時(shí)n的值為__________________15.某中學(xué)高三(2)班甲,乙兩名同學(xué)自高中以來每次考試成績的莖葉圖如圖所示,則甲的中位數(shù)與乙的極差的和為___________.16.曲線在點(diǎn)M(π,0)處的切線方程為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù)(1)若,求的單調(diào)區(qū)間和極值;(2)在(1)的條件下,證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn);(3)若存在,使得,求的取值范圍18.(12分)已知橢圓一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),橢圓C的離心率為.(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;(Ⅱ)從橢圓C在第一象限內(nèi)的部分上取橫坐標(biāo)為2的點(diǎn)P,若橢圓C上有兩個(gè)點(diǎn)A,B使得的平分線垂直于坐標(biāo)軸,且點(diǎn)B與點(diǎn)A的橫坐標(biāo)之差為,求直線AP的方程.19.(12分)已知圓的圓心在第一象限內(nèi),圓關(guān)于直線對稱,與軸相切,被直線截得的弦長為.(1)求圓的方程;(2)若點(diǎn),求過點(diǎn)的圓的切線方程.20.(12分)如圖所示,四棱錐的底面為矩形,,,過底面對角線作與平行的平面交于點(diǎn)(1)求二面角的余弦值;(2)求與所成角的余弦值;(3)求與平面所成角的正弦值21.(12分)已知雙曲線的左、右焦點(diǎn)分別為,,動(dòng)點(diǎn)M滿足(1)求動(dòng)點(diǎn)M的軌跡方程;(2)若動(dòng)點(diǎn)M在雙曲線C上,設(shè)雙曲線C的左支上有兩個(gè)不同的點(diǎn)P,Q,點(diǎn),且,直線NQ與雙曲線C交于另一點(diǎn)B.證明:動(dòng)直線PB經(jīng)過定點(diǎn)22.(10分)在矩形中,是的中點(diǎn),是上,,且,如圖,將沿折起至:(1)指出二面角的平面角,并說明理由;(2)若,求證:平面平面;(3)若是線段的中點(diǎn),求證:直線平面;
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】結(jié)合等差數(shù)列的通項(xiàng)公式求得.【詳解】設(shè)公差,.故選:D2、D【解析】解:橢圓的右焦點(diǎn)為(2,0),所以拋物線的焦點(diǎn)為(2,0),則,故選D3、B【解析】自行車前后輪與撐腳分別接觸地面,使得自行車穩(wěn)定,此時(shí)自行車與地面的三個(gè)接觸點(diǎn)不在同一條線上.【詳解】自行車前后輪與撐腳分別接觸地面,此時(shí)三個(gè)接觸點(diǎn)不在同一條線上,所以可以確定一個(gè)平面,即地面,從而使得自行車穩(wěn)定.故選B項(xiàng).【點(diǎn)睛】本題考查不共線的三個(gè)點(diǎn)確定一個(gè)平面,屬于簡單題.4、D【解析】利用拋物線的定義,把的長轉(zhuǎn)化為點(diǎn)到準(zhǔn)線的距離的和得解【詳解】解:拋物線:,焦點(diǎn)為,過的直線交拋物線于、兩點(diǎn),、到拋物線準(zhǔn)線的距離分別為3、7,則故選D【點(diǎn)睛】本題考查拋物線定義的應(yīng)用,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.5、B【解析】設(shè)出直線,并與拋物線聯(lián)立,得到,再根據(jù)拋物線的定義建立等式即可求解.【詳解】因?yàn)橹本€l的方程為,即,由消去y,得,設(shè),則,又因?yàn)橄业闹悬c(diǎn)到拋物線的準(zhǔn)線的距離為3,所以,而,所以,故,解得,所以拋物線的方程為故選:B.6、D【解析】根據(jù)向量的線性運(yùn)算公式化簡可得結(jié)果.【詳解】因?yàn)镋,F(xiàn)分別是AB,AC的中點(diǎn),所以,,所以,故選:D7、B【解析】求得,可得出,設(shè)橢圓和雙曲線的離心率分別為、,可得,由可求得的取值范圍.【詳解】設(shè),設(shè)雙曲線的實(shí)軸長為,因?yàn)榕c在第一象限內(nèi)交于點(diǎn),是以線段為底邊的等腰三角形,則,由橢圓的定義可得,由雙曲線的定義可得,所以,,則,設(shè)橢圓和雙曲線的離心率分別為、,則,即,因,則,故.故選:B.8、B【解析】根據(jù)邏輯聯(lián)結(jié)詞“且”,一假則假,對四個(gè)選項(xiàng)一一判斷直接即可判斷.【詳解】邏輯聯(lián)結(jié)詞“且”,一假則假.因?yàn)槊}p為真命題,命題q為假命題,所以為假命題,為真命題.所以,為假,故A錯(cuò)誤;為真,故B正確;為假,故C錯(cuò)誤;為假,故D錯(cuò)誤.故選:B9、C【解析】首先寫出展開式的通項(xiàng)公式,然后結(jié)合通項(xiàng)公式確定的系數(shù)即可.【詳解】展開式的通項(xiàng)公式為:,令可得:,則的系數(shù)為:.故選:C.【點(diǎn)睛】二項(xiàng)式定理的核心是通項(xiàng)公式,求解此類問題可以分兩步完成:第一步根據(jù)所給出的條件(特定項(xiàng))和通項(xiàng)公式,建立方程來確定指數(shù)(求解時(shí)要注意二項(xiàng)式系數(shù)中n和r的隱含條件,即n,r均為非負(fù)整數(shù),且n≥r,如常數(shù)項(xiàng)指數(shù)為零、有理項(xiàng)指數(shù)為整數(shù)等);第二步是根據(jù)所求的指數(shù),再求所求解的項(xiàng)10、D【解析】根據(jù)已知條件,用并項(xiàng)求和法即可求得結(jié)果.【詳解】∵∴∴.故選:D.11、A【解析】根據(jù)二項(xiàng)展開式的通項(xiàng)公式,即可求解.【詳解】由題意,二項(xiàng)式展開式中第3項(xiàng),所以展開式中第3項(xiàng)的二項(xiàng)式系數(shù)為.故選:A.12、D【解析】過點(diǎn)作的垂線,垂足為,由線面垂直判定可知平面,則所求角即為,由長度關(guān)系求得即可.【詳解】在平面內(nèi)過點(diǎn)作的垂線,垂足為,連接.,,,平面,平面,的正弦值即為所求角的正弦值,,,.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由雙曲線的方程可知,,即可直接寫出其漸近線的方程.【詳解】由雙曲線的方程為,可知,;則雙曲線的漸近線方程為.故答案:.14、①.13②.##3.4【解析】由題可得利用函數(shù)的單調(diào)性可得取得最大值時(shí)n的值,然后利用,即求.【詳解】∵,∴當(dāng)時(shí),單調(diào)遞減且,當(dāng)時(shí),單調(diào)遞減且,∴時(shí),取得最大值,∴.故答案為:13;.15、111【解析】求出甲的中位數(shù)和乙的極差即得解.【詳解】解:由題得甲的中位數(shù)為,乙的極差為,所以它們的和為.故答案為:11116、【解析】由題意可得,據(jù)此可得切線的斜率,結(jié)合切點(diǎn)坐標(biāo)即可確定切線方程.【詳解】由函數(shù)的解析式可得:,所求切線的斜率為:,由于切點(diǎn)坐標(biāo)為,故切線方程為:.【點(diǎn)睛】導(dǎo)數(shù)運(yùn)算及切線的理解應(yīng)注意的問題一是利用公式求導(dǎo)時(shí)要特別注意除法公式中分子的符號,防止與乘法公式混淆二是直線與曲線公共點(diǎn)的個(gè)數(shù)不是切線的本質(zhì),直線與曲線只有一個(gè)公共點(diǎn),直線不一定是曲線的切線,同樣,直線是曲線的切線,則直線與曲線可能有兩個(gè)或兩個(gè)以上的公共點(diǎn)三是復(fù)合函數(shù)求導(dǎo)的關(guān)鍵是分清函數(shù)的結(jié)構(gòu)形式.由外向內(nèi)逐層求導(dǎo),其導(dǎo)數(shù)為兩層導(dǎo)數(shù)之積.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)遞減區(qū)間是,單調(diào)遞增區(qū)間是,極小值(2)證明見解析(3)【解析】(1)對函數(shù)進(jìn)行求導(dǎo)通分化簡,求出解得,在列出與在區(qū)間上的表格,即可得到答案.(2)由(1)知,在區(qū)間上的最小值為,因?yàn)榇嬖诹泓c(diǎn),所以,從而.在對進(jìn)行分類討論,再利用函數(shù)的單調(diào)性得出結(jié)論.(3)構(gòu)造函數(shù),在對進(jìn)行求導(dǎo),在對進(jìn)行分情況討論,即可得的得到答案.【小問1詳解】函數(shù)的定義域?yàn)?,,由解得與在區(qū)間上的情況如下:–↘↗所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是;在處取得極小值,無極大值【小問2詳解】由(1)知,在區(qū)間上的最小值為因?yàn)榇嬖诹泓c(diǎn),所以,從而當(dāng)時(shí),在區(qū)間上單調(diào)遞減,且,所以是在區(qū)間上的唯一零點(diǎn)當(dāng)時(shí),在區(qū)間上單調(diào)遞減,且,所以在區(qū)間上僅有一個(gè)零點(diǎn)綜上可知,若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn)【小問3詳解】設(shè),①若,則,符合題意②若,則,故當(dāng)時(shí),,在上單調(diào)遞增所以,存在,使得的充要條件為,解得③若,則,故當(dāng)時(shí),;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增所以,存在,使得的充要條件為,而,所以不合題意綜上,的取值范圍是【點(diǎn)睛】本題考查求函數(shù)的單調(diào)區(qū)間和極值、證明給定區(qū)間只有一個(gè)零點(diǎn)問題,以及含參存在問題,屬于難題.18、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由題意可得關(guān)于參數(shù)的方程,解之即可得到結(jié)果;(Ⅱ)設(shè)直線AP的斜率為k,聯(lián)立方程結(jié)合韋達(dá)定理可得A點(diǎn)坐標(biāo),同理可得B點(diǎn)坐標(biāo),結(jié)合橫坐標(biāo)之差為,可得直線方程.【詳解】(Ⅰ)由拋物線方程可得焦點(diǎn)為,則橢圓C的一個(gè)頂點(diǎn)為,即.由,解得.∴橢圓C的標(biāo)準(zhǔn)方程是;(Ⅱ)由題可知點(diǎn),設(shè)直線AP的斜率為k,由題意知,直線BP的斜率為,設(shè),,直線AP的方程為,即.聯(lián)立方程組消去y得.∵P,A為直線AP與橢圓C的交點(diǎn),∴,即.把換成,得.∴,解得,當(dāng)時(shí),直線BP的方程為,經(jīng)驗(yàn)證與橢圓C相切,不符合題意;當(dāng)時(shí),直線BP的方程為,符合題意.∴直線AP得方程為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:兩條直線關(guān)于直線對稱,兩直線的傾斜角互補(bǔ),斜率互為相反數(shù).19、(1)(2)或【解析】(1)結(jié)合點(diǎn)到直線的距離公式、弦長公式求得,由此求得圓的方程.(2)根據(jù)過的圓的切線的斜率是否存在進(jìn)行分類討論,結(jié)合點(diǎn)到直線的距離公式求得切線方程.【小問1詳解】由題意,設(shè)圓的標(biāo)準(zhǔn)方程為:,圓關(guān)于直線對稱,圓與軸相切:…①點(diǎn)到的距離為:,圓被直線截得的弦長為,,結(jié)合①有:,,又,,,圓的標(biāo)準(zhǔn)方程為:.【小問2詳解】當(dāng)直線的斜率不存在時(shí),滿足題意當(dāng)直線的斜率存在時(shí),設(shè)直線的斜率為,則方程為.又圓C的圓心為,半徑,由,解得.所以直線方程為,即即直線的方程為或.20、(1);(2);(3).【解析】(1)設(shè),連接、,證明出平面,推導(dǎo)出為的中點(diǎn),然后以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,利用空間向量法可求得二面角的余弦值;(2)利用空間向量法可求得與所成角的余弦值;(3)利用空間向量法可求得與平面所成角的正弦值.【小問1詳解】解:設(shè),則為、的中點(diǎn),連接、,因?yàn)槠矫?,平面,平面平面,則,因?yàn)闉榈闹悬c(diǎn),則為的中點(diǎn),因?yàn)?,為的中點(diǎn),則,同理可證,,平面,,,則,,以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,則、、、、、,設(shè)平面的法向量為,,,由,取,可得,易知平面的一個(gè)法向量為,.由圖可知,二面角的平面角為銳角,因此,二面角的余弦值為.【小問2詳解】解:,,,因此,與所成角的余弦值為.【小問3詳解】解:,,因此,與平面所成角的正弦值為.21、(1)(2)證明見解析【解析】(1)根據(jù)雙曲線的定義求得的值得雙曲線方程;(2)確定垂直于軸,設(shè)直線BP的方程為,設(shè),,則,直線方程代入雙曲線方程,由相交求得范圍,由韋達(dá)定理,利用N、B、Q三點(diǎn)共線,且NQ斜率存在,由斜率相等得出的關(guān)系,代入韋達(dá)定理的結(jié)論可求得的值,從而得直線BP所過定點(diǎn)【小問1詳解】因?yàn)?,所以,?dòng)點(diǎn)M的軌跡是以點(diǎn)、為左、右焦點(diǎn)的雙曲線的左支,則,可得,,所以,點(diǎn)M的軌跡方程為;【小問2詳解】證明:∵,∴直線PQ垂直于x軸,易知,直線BP的斜率存在且不為0,設(shè)直線BP的方程為,設(shè),,則,聯(lián)立,化簡得:,直線與雙曲線左支、右支各有一個(gè)交點(diǎn),需滿足或,∴,,又,又
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《人工智能通識》-項(xiàng)目3-1 AIGC圖像生成應(yīng)用 - 相關(guān)知識
- 機(jī)場領(lǐng)導(dǎo)安全培訓(xùn)課件
- 機(jī)場運(yùn)行與安全課件
- 機(jī)場消防安全培訓(xùn)知識課件
- 安全培訓(xùn)計(jì)劃記錄課件
- 嘔吐患者的排泄管理
- 消毒在手術(shù)室護(hù)理中的應(yīng)用
- 眼霜使用全攻略
- 機(jī)場安全教育培訓(xùn)內(nèi)容課件
- 安全培訓(xùn)計(jì)劃圖表課件
- 大型電子顯示屏安裝施工規(guī)范
- 中職中醫(yī)教師面試題庫及答案
- 2026年關(guān)于汽車銷售工作計(jì)劃書
- 2025年汕頭市金平區(qū)教師招聘筆試參考試題及答案解析
- T∕ACEF 235-2025 企業(yè)環(huán)境社會(huì)治理(ESG)評價(jià)機(jī)構(gòu)要求
- 拆遷工程安全監(jiān)測方案
- 視頻會(huì)議系統(tǒng)施工質(zhì)量控制方案
- 質(zhì)量環(huán)境及職業(yè)健康安全三體系風(fēng)險(xiǎn)和機(jī)遇識別評價(jià)分析及控制措施表(包含氣候變化)
- 2025至2030防雷行業(yè)項(xiàng)目調(diào)研及市場前景預(yù)測評估報(bào)告
- 2025年護(hù)理三基考試卷(含答案)
- 除夕煙火秀活動(dòng)方案
評論
0/150
提交評論