河南省平頂山市魯山縣第一高級中學(xué)2026屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
河南省平頂山市魯山縣第一高級中學(xué)2026屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
河南省平頂山市魯山縣第一高級中學(xué)2026屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
河南省平頂山市魯山縣第一高級中學(xué)2026屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
河南省平頂山市魯山縣第一高級中學(xué)2026屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河南省平頂山市魯山縣第一高級中學(xué)2026屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A.8 B.16C. D.2.若曲線表示圓,則m的取值范圍是()A. B.C. D.3.已知拋物線上一點到焦點的距離為3,準(zhǔn)線為l,若l與雙曲線的兩條漸近線所圍成的三角形面積為,則雙曲線C的離心率為()A.3 B.C. D.4.已知拋物線的焦點為,直線過點與拋物線相交于兩點,且,則直線的斜率為()A. B.C. D.5.在中,已知角A,B,C所對的邊為a,b,c,,,,則()A. B.C. D.16.已知是雙曲線C的兩個焦點,P為C上一點,且,則C的離心率為()A. B.C. D.7.設(shè)點是點,,關(guān)于平面的對稱點,則()A.10 B.C. D.388.若雙曲線(,)的焦距為,且漸近線經(jīng)過點,則此雙曲線的方程為()A. B.C. D.9.在等差數(shù)列中,,,則的取值范圍是()A. B.C. D.10.命題,,則為()A., B.,C., D.,11.拋物線的準(zhǔn)線方程為()A B.C. D.12.給出下列判斷,其中正確的是()A.三點唯一確定一個平面B.一條直線和一個點唯一確定一個平面C.兩條平行直線與同一條直線相交,三條直線在同一平面內(nèi)D.空間兩兩相交的三條直線在同一平面內(nèi)二、填空題:本題共4小題,每小題5分,共20分。13.過點且與直線平行的直線的方程是______.14.已知雙曲線的右焦點為F,以F為圓心,以a為半徑的圓與雙曲線C的一條漸近線交于A,B兩點.若(O為坐標(biāo)原點),則雙曲線C的離心率為___________.15.已知實數(shù),滿足,則的最大值為______.16.若點為圓的弦的中點,則弦所在直線方程為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,.(1)求證數(shù)列是等差數(shù)列,并求通項公式;(2)已知數(shù)列的前項和為,求.18.(12分)共享電動車(sharedev)是一種新的交通工具,通過掃碼開鎖,實現(xiàn)循環(huán)共享.某記者來到中國傳媒大學(xué)探訪,在校園噴泉旁停放了10輛共享電動車,這些電動車分為熒光綠和橙色兩種顏色,已知從這些共享電動車中任取1輛,取到的是橙色的概率為,若從這些共享電動車中任意抽取3輛.(1)求取出的3輛共享電動車中恰好有一輛是橙色的概率;(2)求取出的3輛共享電動車中橙色的電動車的輛數(shù)X的分布列與數(shù)學(xué)期望.19.(12分)近年來,由于耕地面積的緊張,化肥的施用量呈增加趨勢,一方面,化肥的施用對糧食增產(chǎn)增收起到了關(guān)鍵作用,另一方面,也成為環(huán)境污染,空氣污染,土壤污染的重要來源之一.如何合理地施用化肥,使其最大程度地促進(jìn)糧食增產(chǎn),減少對周圍環(huán)境的污染成為需要解決的重要問題.研究糧食產(chǎn)量與化肥施用量的關(guān)系,成為解決上述問題的前提.某研究團(tuán)隊收集了10組化肥施用量和糧食畝產(chǎn)量的數(shù)據(jù)并對這些數(shù)據(jù)作了初步處理,得到了如圖所示的散點圖及一些統(tǒng)計量的值,化肥施用量為x(單位:公斤),糧食畝產(chǎn)量為y(單位:百公斤).參考數(shù)據(jù):65091.552.51478.630.5151546.5表中.(1)根據(jù)散點圖判斷與,哪一個適宜作為糧食畝產(chǎn)量y關(guān)于化肥施用量x的回歸方程類型(給出判斷即可,不必說明理由);(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;并預(yù)測化肥施用量為27公斤時,糧食畝產(chǎn)量y的值;(3)經(jīng)生產(chǎn)技術(shù)提高后,該化肥的有效率Z大幅提高,經(jīng)試驗統(tǒng)計得Z大致服從正態(tài)分布N),那這種化肥的有效率超過58%的概率約為多少?附:①對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為;②若隨機(jī)變量,則有,;③取.20.(12分)已知橢圓的離心率為,點是橢圓E上一點.(1)求E的方程;(2)設(shè)過點的動直線與橢圓E相交于兩點,O為坐標(biāo)原點,求面積的取值范圍.21.(12分)如圖,第1個圖形需要4根火柴,第2個圖形需要7根火柴,,設(shè)第n個圖形需要根火柴(1)試寫出,并求;(2)記前n個圖形所需的火柴總根數(shù)為,設(shè),求數(shù)列的前n項和22.(10分)已知函數(shù),數(shù)列的前n項和為,且對一切正整數(shù)n、點都在因數(shù)的圖象上(1)求數(shù)列的通項公式;(2)令,數(shù)列的前n項和,求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】畫出直觀圖,利用椎體體積公式進(jìn)行求解.【詳解】畫出直觀圖,為四棱錐A-BCDE,其中BC=4,BE=2,AE=2,且BE,AE,DE兩兩垂直,故體積為.故選:C2、C【解析】按照圓的一般方程滿足的條件求解即可.【詳解】或.故選:C.3、C【解析】先由已知結(jié)合拋物線的定義求出,從而可得拋物線的準(zhǔn)線方程,則可求出準(zhǔn)線l與兩條漸近線的交點分別為,然后由題意可得,進(jìn)而可求出雙曲線的離心率詳解】依題意,拋物線準(zhǔn)線,由拋物線定義知,解得,則準(zhǔn)線,雙曲線C的兩條漸近線為,于是得準(zhǔn)線l與兩條漸近線的交點分別為,原點為O,則面積,雙曲線C的半焦距為c,離心率為e,則有,解得故選:C4、B【解析】設(shè)直線傾斜角為,由,及,可求得,當(dāng)點在軸上方,又,求得,利用對稱性即可得出結(jié)果.【詳解】設(shè)直線傾斜角為,由,所以,由,,所以,當(dāng)點在軸上方,又,所以,所以由對稱性知,直線的斜率.故選:B.5、B【解析】利用正弦定理求解.【詳解】在中,由正弦定理得,解得,故選:B.6、A【解析】根據(jù)雙曲線的定義及條件,表示出,結(jié)合余弦定理可得答案.【詳解】因為,由雙曲線的定義可得,所以,;因為,由余弦定理可得,整理可得,所以,即.故選:A【點睛】關(guān)鍵點睛:雙曲線的定義是入手點,利用余弦定理建立間的等量關(guān)系是求解的關(guān)鍵.7、A【解析】寫出點坐標(biāo),由對稱性易得線段長【詳解】點是點,,關(guān)于平面的對稱點,的橫標(biāo)和縱標(biāo)與相同,而豎標(biāo)與相反,,,,直線與軸平行,,故選:A8、B【解析】根據(jù)題意得到,,解得答案.【詳解】雙曲線(,)的焦距為,故,.且漸近線經(jīng)過點,故,故,雙曲線方程為:.故選:.【點睛】本題考查了雙曲線方程,意在考查學(xué)生對于雙曲線基本知識的掌握情況.9、A【解析】根據(jù)題設(shè)可得關(guān)于的不等式,從而可求的取值范圍.【詳解】設(shè)公差為,因為,,所以,即,從而.故選:A.10、B【解析】直接利用特稱命題的否定是全稱命題寫出結(jié)果即可.【詳解】命題,為特稱命題,而特稱命題的否定是全稱命題,所以命題,,則為:,.故選:B11、D【解析】根據(jù)拋物線方程求出,進(jìn)而可得焦點坐標(biāo)以及準(zhǔn)線方程.【詳解】由可得,所以焦點坐標(biāo)為,準(zhǔn)線方程為:,故選:D.12、C【解析】根據(jù)確定平面的條件可對每一個選項進(jìn)行判斷.【詳解】對A,如果三點在同一條直線上,則不能確定一個平面,故A錯誤;對B,如果這個點在這條直線上,就不能確定一個平面,故B錯誤;對C,兩條平行直線確定一個平面,一條直線與這兩條平行直線都相交,則這條直線就在這兩條平行直線確定的一個平面內(nèi),故這三條直線在同一平面內(nèi),C正確;對D,空間兩兩相交的三條直線可確定一個平面,也可確定三個平面,故D錯誤.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)出直線的方程,代入點的坐標(biāo),求出直線的方程.【詳解】設(shè)過點且與直線平行的直線的方程為,將代入,則,解得:,所以直線的方程為.故答案為:14、【解析】過F作,利用點到直線距離可求出,再根據(jù)勾股定理可得,,由可得,即可建立關(guān)系求解.【詳解】如圖,過F作,則E是AB中點,設(shè)漸近線為,則,則在直角三角形OEF中,,在直角三角形BEF中,,,則,即,即,則,即,.故答案為:.【點睛】本題考查雙曲線離心率的求解,解題的關(guān)鍵是分別表示出,,由建立關(guān)系.15、【解析】由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組得到最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖所示,化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過點時,直線在y軸上的截距最大,z最大,聯(lián)立方程組,解得點,則取得最大值為.故答案為:【點睛】本題考查的是線性規(guī)劃問題,解決線性規(guī)劃問題的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想,需要注意的是:一,準(zhǔn)確無誤作出可行域;二,畫目標(biāo)函數(shù)所對應(yīng)直線時,要注意讓其斜率與約束條件中的直線的斜率比較;三,一般情況下,目標(biāo)函數(shù)的最值會在可行域的端點或邊界上取得.16、【解析】因為為圓的弦的中點,所以圓心坐標(biāo)為,,所在直線方程為,化簡為,故答案為.考點:1、兩直線垂直斜率的關(guān)系;2、點斜式求直線方程.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見詳解,(2)【解析】(1)由題意將原式化簡變形得到,可證明數(shù)列是等差數(shù)列,由等差數(shù)列的通項公式則可得,進(jìn)而得到的通項公式;(2)由(1)把的通項公式代入,得到,利用乘公比錯位相減法求和即可.【小問1詳解】若,則,這與矛盾,,由已知得,,故數(shù)列是以為首項,2為公差的等差數(shù)列,,即.【小問2詳解】設(shè),則由(1)知,所以,,兩式相減,則,所以.18、(1);(2)分布列見解析,數(shù)學(xué)期望為.【解析】(1)先求出兩種顏色的電動車各有多少輛,然后根據(jù)超幾何分布求概率的方法即可求得答案;(2)先確定X的所有可能取值,進(jìn)而求出概率并列出分布列,然后根據(jù)期望公式求出答案.【小問1詳解】因為從10輛共享電動車中任取一輛,取到橙色的概率為0.4,所以橙色的電動車有4輛,熒光綠的電動車有6輛.記A為“從中任取3輛共享單車中恰好有一輛是橙色”,則.【小問2詳解】隨機(jī)變量X的所有可能取值為0,1,2,3.所以,,,.所以分布列為0123數(shù)學(xué)期望.19、(1);(2);810公斤;(3).【解析】(1)根據(jù)散點圖的變化趨勢,結(jié)合給定模型的性質(zhì)直接判斷適合的模型即可.(2)將(1)中模型取對得,結(jié)合題設(shè)及表格數(shù)據(jù)求及參數(shù),進(jìn)而可得參數(shù)c,即可確定回歸方程,進(jìn)而估計時糧食畝產(chǎn)量y的值.(3)由題設(shè)知,結(jié)合特殊區(qū)間的概率值及正態(tài)分布的對稱性求即可.【小問1詳解】根據(jù)散點圖,呈現(xiàn)非線性的變化趨勢,故更適合作為關(guān)于的回歸方程類型.【小問2詳解】對兩邊取對數(shù),得,即,由表中數(shù)據(jù)得:,,,則,∴關(guān)于的回歸方程為,當(dāng)時,,∴當(dāng)化肥施用量為27公斤時,糧食畝產(chǎn)量約為810公斤.小問3詳解】依題意,,則有,∴,則,∴這種化肥的有效率超過58%的概率約為.20、(1);(2).【解析】(1)列出關(guān)于a、b、c的方程組即可求解;(2)根據(jù)題意,直線l斜率存在,設(shè)其方程為,代入橢圓方程消去y得到關(guān)于x的二次方程,根據(jù)韋達(dá)定理得到根與系數(shù)的關(guān)系,求出PQ長度,求出原點到l的距離,根據(jù)三角形面積公式表示出△OPQ的面積,利用基本不等式求解其范圍即可.【小問1詳解】由題設(shè)知,解得.∴橢圓E的方程為;【小問2詳解】當(dāng)軸時不合題意,故可設(shè),則,得.由題意知,即,得.從而.又點O到直線的距離,∴,令,則,,,所求面積的取值范圍為.21、(1),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論