版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省上饒市“山江湖”協(xié)作體統(tǒng)招班2026屆高三數(shù)學(xué)第一學(xué)期期末檢測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如果直線與圓相交,則點(diǎn)與圓C的位置關(guān)系是()A.點(diǎn)M在圓C上 B.點(diǎn)M在圓C外C.點(diǎn)M在圓C內(nèi) D.上述三種情況都有可能2.設(shè)x、y、z是空間中不同的直線或平面,對(duì)下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②3.已知雙曲線的右焦點(diǎn)為為坐標(biāo)原點(diǎn),以為直徑的圓與雙曲線的一條漸近線交于點(diǎn)及點(diǎn),則雙曲線的方程為()A. B. C. D.4.在邊長(zhǎng)為的菱形中,,沿對(duì)角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.5.設(shè)是虛數(shù)單位,則()A. B. C. D.6.設(shè),,是非零向量.若,則()A. B. C. D.7.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.8.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于()cm3A. B. C. D.9.若為純虛數(shù),則z=()A. B.6i C. D.2010.已知等差數(shù)列{an},則“a2>a1”是“數(shù)列{an}為單調(diào)遞增數(shù)列”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件11.已知函數(shù),若函數(shù)有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.12.設(shè)、,數(shù)列滿足,,,則()A.對(duì)于任意,都存在實(shí)數(shù),使得恒成立B.對(duì)于任意,都存在實(shí)數(shù),使得恒成立C.對(duì)于任意,都存在實(shí)數(shù),使得恒成立D.對(duì)于任意,都存在實(shí)數(shù),使得恒成立二、填空題:本題共4小題,每小題5分,共20分。13.某校名學(xué)生參加軍事冬令營(yíng)活動(dòng),活動(dòng)期間各自扮演一名角色進(jìn)行分組游戲,角色按級(jí)別從小到大共種,分別為士兵、排長(zhǎng)、連長(zhǎng)、營(yíng)長(zhǎng)、團(tuán)長(zhǎng)、旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)和司令.游戲分組有兩種方式,可以人一組或者人一組.如果人一組,則必須角色相同;如果人一組,則人角色相同或者人為級(jí)別連續(xù)的個(gè)不同角色.已知這名學(xué)生扮演的角色有名士兵和名司令,其余角色各人,現(xiàn)在新加入名學(xué)生,將這名學(xué)生分成組進(jìn)行游戲,則新加入的學(xué)生可以扮演的角色的種數(shù)為_(kāi)_______.14.設(shè)命題:,,則:__________.15.為了了解一批產(chǎn)品的長(zhǎng)度(單位:毫米)情況,現(xiàn)抽取容量為400的樣本進(jìn)行檢測(cè),如圖是檢測(cè)結(jié)果的頻率分布直方圖,根據(jù)產(chǎn)品標(biāo)準(zhǔn),單件產(chǎn)品長(zhǎng)度在區(qū)間的一等品,在區(qū)間和的為二等品,其余均為三等品,則樣本中三等品的件數(shù)為_(kāi)_________.16.如圖所示,邊長(zhǎng)為1的正三角形中,點(diǎn),分別在線段,上,將沿線段進(jìn)行翻折,得到右圖所示的圖形,翻折后的點(diǎn)在線段上,則線段的最小值為_(kāi)______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)中國(guó)古代數(shù)學(xué)經(jīng)典《數(shù)書(shū)九章》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱為“陽(yáng)馬”,將四個(gè)面都為直角三角形的四面體稱之為“鱉臑”.在如圖所示的陽(yáng)馬中,底面ABCD是矩形.平面,,,以的中點(diǎn)O為球心,AC為直徑的球面交PD于M(異于點(diǎn)D),交PC于N(異于點(diǎn)C).(1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫(xiě)出它每個(gè)面的直角(只需寫(xiě)出結(jié)論);若不是,請(qǐng)說(shuō)明理由;(2)求直線與平面所成角的正弦值.18.(12分)如圖,在四棱錐中,側(cè)棱底面,,,,,是棱中點(diǎn).(1)已知點(diǎn)在棱上,且平面平面,試確定點(diǎn)的位置并說(shuō)明理由;(2)設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),當(dāng)點(diǎn)在何處時(shí),直線與平面所成角最大?并求最大角的正弦值.19.(12分)在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于兩點(diǎn).(1)寫(xiě)出曲線的直角坐標(biāo)方程和直線的普通方程;(2)若點(diǎn)的極坐標(biāo)為,,求的值.20.(12分)已知函數(shù).(1)若是函數(shù)的極值點(diǎn),求的單調(diào)區(qū)間;(2)當(dāng)時(shí),證明:21.(12分)為了加強(qiáng)環(huán)保知識(shí)的宣傳,某學(xué)校組織了垃圾分類知識(shí)竟賽活動(dòng).活動(dòng)設(shè)置了四個(gè)箱子,分別寫(xiě)有“廚余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干張,每張卡片上寫(xiě)有一種垃圾的名稱.每位參賽選手從所有卡片中隨機(jī)抽取張,按照自己的判斷將每張卡片放入對(duì)應(yīng)的箱子中.按規(guī)則,每正確投放一張卡片得分,投放錯(cuò)誤得分.比如將寫(xiě)有“廢電池”的卡片放入寫(xiě)有“有害垃圾”的箱子,得分,放入其它箱子,得分.從所有參賽選手中隨機(jī)抽取人,將他們的得分按照、、、、分組,繪成頻率分布直方圖如圖:(1)分別求出所抽取的人中得分落在組和內(nèi)的人數(shù);(2)從所抽取的人中得分落在組的選手中隨機(jī)選取名選手,以表示這名選手中得分不超過(guò)分的人數(shù),求的分布列和數(shù)學(xué)期望.22.(10分)傳染病的流行必須具備的三個(gè)基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個(gè)環(huán)節(jié)必須同時(shí)存在,方能構(gòu)成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應(yīng)該佩戴口罩.某地區(qū)已經(jīng)出現(xiàn)了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識(shí)和防控情況,用分層抽樣的方法從全體居民中抽出一個(gè)容量為100的樣本,統(tǒng)計(jì)樣本中每個(gè)人出行是否會(huì)佩戴口罩的情況,得到下面列聯(lián)表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握認(rèn)為是否會(huì)佩戴口罩出行的行為與年齡有關(guān)?(2)用樣本估計(jì)總體,若從該地區(qū)出行不戴口罩的居民中隨機(jī)抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)圓心到直線的距離小于半徑可得滿足的條件,利用與圓心的距離判斷即可.【詳解】直線與圓相交,圓心到直線的距離,即.也就是點(diǎn)到圓的圓心的距離大于半徑.即點(diǎn)與圓的位置關(guān)系是點(diǎn)在圓外.故選:【點(diǎn)睛】本題主要考查直線與圓相交的性質(zhì),考查點(diǎn)到直線距離公式的應(yīng)用,屬于中檔題.2、C【解析】
①舉反例,如直線x、y、z位于正方體的三條共點(diǎn)棱時(shí)②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個(gè)共點(diǎn)側(cè)面時(shí).【詳解】①當(dāng)直線x、y、z位于正方體的三條共點(diǎn)棱時(shí),不正確;②因?yàn)榇怪庇谕黄矫娴膬芍本€平行,正確;③因?yàn)榇怪庇谕恢本€的兩平面平行,正確;④如x、y、z位于正方體的三個(gè)共點(diǎn)側(cè)面時(shí),不正確.故選:C.【點(diǎn)睛】此題考查立體幾何中線面關(guān)系,選擇題一般可通過(guò)特殊值法進(jìn)行排除,屬于簡(jiǎn)單題目.3、C【解析】
根據(jù)雙曲線方程求出漸近線方程:,再將點(diǎn)代入可得,連接,根據(jù)圓的性質(zhì)可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:,,連接,則,解得,所以,解得.故雙曲線方程為.故選:C【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì),需掌握雙曲線的漸近線求法,屬于中檔題.4、A【解析】
畫(huà)圖取的中點(diǎn)M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點(diǎn)M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點(diǎn)睛】此題考查三棱錐的外接球表面積,關(guān)鍵點(diǎn)是通過(guò)幾何關(guān)系求得球心位置和球半徑,方法較多,屬于較易題目.5、A【解析】
利用復(fù)數(shù)的乘法運(yùn)算可求得結(jié)果.【詳解】由復(fù)數(shù)的乘法法則得.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.6、D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點(diǎn):平面向量數(shù)量積.【思路點(diǎn)睛】幾何圖形中向量的數(shù)量積問(wèn)題是近幾年高考的又一熱點(diǎn),作為一類既能考查向量的線性運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及平面幾何知識(shí),又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問(wèn)題,實(shí)有其合理之處.解決此類問(wèn)題的常用方法是:①利用已知條件,結(jié)合平面幾何知識(shí)及向量數(shù)量積的基本概念直接求解(較易);②將條件通過(guò)向量的線性運(yùn)算進(jìn)行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運(yùn)算,此法對(duì)解含垂直關(guān)系的問(wèn)題往往有很好效果.7、A【解析】
畫(huà)出約束條件的可行域,利用目標(biāo)函數(shù)的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因?yàn)榈淖畲笾禐?,所以在點(diǎn)處取得最大值,則,即.故選:A【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過(guò)數(shù)形結(jié)合是解決本題的關(guān)鍵.8、D【解析】解:根據(jù)幾何體的三視圖知,該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù),計(jì)算它的體積為:V=V三棱柱+V半圓柱=×2×2×1+?π?12×1=(6+1.5π)cm1.故答案為6+1.5π.點(diǎn)睛:根據(jù)幾何體的三視圖知該幾何體是三棱柱與半圓柱體的組合體,結(jié)合圖中數(shù)據(jù)計(jì)算它的體積即可.9、C【解析】
根據(jù)復(fù)數(shù)的乘法運(yùn)算以及純虛數(shù)的概念,可得結(jié)果.【詳解】∵為純虛數(shù),∴且得,此時(shí)故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的概念與運(yùn)算,屬基礎(chǔ)題.10、C【解析】試題分析:根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可.解:在等差數(shù)列{an}中,若a2>a1,則d>0,即數(shù)列{an}為單調(diào)遞增數(shù)列,若數(shù)列{an}為單調(diào)遞增數(shù)列,則a2>a1,成立,即“a2>a1”是“數(shù)列{an}為單調(diào)遞增數(shù)列”充分必要條件,故選C.考點(diǎn):必要條件、充分條件與充要條件的判斷.11、B【解析】
根據(jù)所給函數(shù)解析式,畫(huà)出函數(shù)圖像.結(jié)合圖像,分段討論函數(shù)的零點(diǎn)情況:易知為的一個(gè)零點(diǎn);對(duì)于當(dāng)時(shí),由代入解析式解方程可求得零點(diǎn),結(jié)合即可求得的范圍;對(duì)于當(dāng)時(shí),結(jié)合導(dǎo)函數(shù),結(jié)合導(dǎo)數(shù)的幾何意義即可判斷的范圍.綜合后可得的范圍.【詳解】根據(jù)題意,畫(huà)出函數(shù)圖像如下圖所示:函數(shù)的零點(diǎn),即.由圖像可知,,所以是的一個(gè)零點(diǎn),當(dāng)時(shí),,若,則,即,所以,解得;當(dāng)時(shí),,則,且若在時(shí)有一個(gè)零點(diǎn),則,綜上可得,故選:B.【點(diǎn)睛】本題考查了函數(shù)圖像的畫(huà)法,函數(shù)零點(diǎn)定義及應(yīng)用,根據(jù)零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍,導(dǎo)數(shù)的幾何意義應(yīng)用,屬于中檔題.12、D【解析】
取,可排除AB;由蛛網(wǎng)圖可得數(shù)列的單調(diào)情況,進(jìn)而得到要使,只需,由此可得到答案.【詳解】取,,數(shù)列恒單調(diào)遞增,且不存在最大值,故排除AB選項(xiàng);由蛛網(wǎng)圖可知,存在兩個(gè)不動(dòng)點(diǎn),且,,因?yàn)楫?dāng)時(shí),數(shù)列單調(diào)遞增,則;當(dāng)時(shí),數(shù)列單調(diào)遞減,則;所以要使,只需要,故,化簡(jiǎn)得且.故選:D.【點(diǎn)睛】本題考查遞推數(shù)列的綜合運(yùn)用,考查邏輯推理能力,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對(duì)新加入的學(xué)生所扮演的角色進(jìn)行分類討論,分析各種情況下個(gè)學(xué)生所扮演的角色的分組,綜合可得出結(jié)論.【詳解】依題意,名學(xué)生分成組,則一定是個(gè)人組和個(gè)人組.①若新加入的學(xué)生是士兵,則可以將這個(gè)人分組如下;名士兵;士兵、排長(zhǎng)、連長(zhǎng)各名;營(yíng)長(zhǎng)、團(tuán)長(zhǎng)、旅長(zhǎng)各名;師長(zhǎng)、軍長(zhǎng)、司令各名;名司令.所以新加入的學(xué)生可以是士兵,由對(duì)稱性可知也可以是司令;②若新加入的學(xué)生是排長(zhǎng),則可以將這個(gè)人分組如下:名士兵;連長(zhǎng)、營(yíng)長(zhǎng)、團(tuán)長(zhǎng)各名;旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)各名;名司令;名排長(zhǎng).所以新加入的學(xué)生可以是排長(zhǎng),由對(duì)稱性可知也可以是軍長(zhǎng);③若新加入的學(xué)生是連長(zhǎng),則可以將這個(gè)人分組如下:名士兵;士兵、排長(zhǎng)、連長(zhǎng)各名;連長(zhǎng)、營(yíng)長(zhǎng)、團(tuán)長(zhǎng)各名;旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)各名;名司令.所以新加入的學(xué)生可以是連長(zhǎng),由對(duì)稱性可知也可以是師長(zhǎng);④若新加入的學(xué)生是營(yíng)長(zhǎng),則可以將這個(gè)人分組如下:名士兵;排長(zhǎng)、連長(zhǎng)、營(yíng)長(zhǎng)各名;營(yíng)長(zhǎng)、團(tuán)長(zhǎng)、旅長(zhǎng)各名;師長(zhǎng)、軍長(zhǎng)、司令各名;名司令.所以新加入的學(xué)生可以是營(yíng)長(zhǎng),由對(duì)稱性可知也可以是旅長(zhǎng);⑤若新加入的學(xué)生是團(tuán)長(zhǎng),則可以將這個(gè)人分組如下:名士兵;排長(zhǎng)、連長(zhǎng)、營(yíng)長(zhǎng)各名;旅長(zhǎng)、師長(zhǎng)、軍長(zhǎng)各名;名司令;名團(tuán)長(zhǎng).所以新加入的學(xué)生可以是團(tuán)長(zhǎng).綜上所述,新加入學(xué)生可以扮演種角色.故答案為:.【點(diǎn)睛】本題考查分類計(jì)數(shù)原理的應(yīng)用,解答的關(guān)鍵就是對(duì)新加入的學(xué)生所扮演的角色進(jìn)行分類討論,屬于中等題.14、,【解析】
存在符號(hào)改任意符號(hào),結(jié)論變相反.【詳解】命題是特稱命題,則為全稱命題,故將“”改為“”,將“”改為“”,故:,.故答案為:,.【點(diǎn)睛】本題考查全(特)稱命題.對(duì)全(特)稱命題進(jìn)行否定的方法:(1)改寫(xiě)量詞:全稱量詞改寫(xiě)為存在量詞,存在量詞改寫(xiě)為全稱量詞;(2)否定結(jié)論:對(duì)于一般命題的否定只需直接否定結(jié)論即可.15、100.【解析】分析:根據(jù)頻率分布直方圖得到三等品的頻率,然后可求得樣本中三等品的件數(shù).詳解:由題意得,三等品的長(zhǎng)度在區(qū)間,和內(nèi),根據(jù)頻率分布直方圖可得三等品的頻率為,∴樣本中三等品的件數(shù)為.點(diǎn)睛:頻率分布直方圖的縱坐標(biāo)為,因此每一個(gè)小矩形的面積表示樣本個(gè)體落在該區(qū)間內(nèi)的頻率,把小矩形的高視為頻率時(shí)常犯的錯(cuò)誤.16、【解析】
設(shè),,在中利用正弦定理得出關(guān)于的函數(shù),從而可得的最小值.【詳解】解:設(shè),,則,,∴,在中,由正弦定理可得,即,∴,∴當(dāng)即時(shí),取得最小值.故答案為.【點(diǎn)睛】本題考查正弦定理解三角形的應(yīng)用,屬中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析,是,,,,;(2)【解析】
(1)根據(jù)是球的直徑,則,又平面,得到,再由線面垂直的判定定理得到平面,,進(jìn)而得到,再利用線面垂直的判定定理得到平面.(2)以A為原點(diǎn),,,所在直線為x,y,z軸建立直角坐標(biāo)系,設(shè),由,解得,得到,從而得到,然后求得平面的一個(gè)法向量,代入公式求解.【詳解】(1)因?yàn)槭乔虻闹睆?,則,又平面,∴,.∴平面,∴,∴平面.根據(jù)證明可知,四面體是鱉臑.它的每個(gè)面的直角分別是,,,.(2)如圖,以A為原點(diǎn),,,所在直線為x,y,z軸建立直角坐標(biāo)系,則,,,,.M為中點(diǎn),從而.所以,設(shè),則.由,得.由得,即.所以.設(shè)平面的一個(gè)法向量為.由.取,,,得到.記與平面所成角為θ,則.所以直線與平面所成的角的正弦值為.【點(diǎn)睛】本題主要考查線面垂直的判定定理和線面角的向量求法,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.18、(1)為中點(diǎn),理由見(jiàn)解析;(2)當(dāng)點(diǎn)在線段靠近的三等分點(diǎn)時(shí),直線與平面所成角最大,最大角的正弦值.【解析】
(1)為中點(diǎn),可利用中位線與平行四邊形性質(zhì)證明,,從而證明平面平面;(2)以A為原點(diǎn),分別以,,所在直線為、、軸建立空間直角坐標(biāo)系,利用向量法求出當(dāng)點(diǎn)在線段靠近的三等分點(diǎn)時(shí),直線與平面所成角最大,并可求出最大角的正弦值.【詳解】(1)為中點(diǎn),證明如下:分別為中點(diǎn),又平面平面平面又,且四邊形為平行四邊形,同理,平面,又平面平面(2)以A為原點(diǎn),分別以,,所在直線為、、軸建立空間直角坐標(biāo)系則,設(shè)直線與平面所成角為,則取平面的法向量為則令,則所以當(dāng)時(shí),等號(hào)成立即當(dāng)點(diǎn)在線段靠近的三等分點(diǎn)時(shí),直線與平面所成角最大,最大角的正弦值.【點(diǎn)睛】本題主要考查了平面與平面的平行,直線與平面所成角的求解,考查了學(xué)生的直觀想象與運(yùn)算求解能力.19、(1)曲線的直角坐標(biāo)方程為即,直線的普通方程為;(2).【解析】
(1)利用代入法消去參數(shù)方程中的參數(shù),可得直線的普通方程,極坐標(biāo)方程兩邊同乘以利用即可得曲線的直角坐標(biāo)方程;(2)直線的參數(shù)方程代入圓的直角坐標(biāo)方程,根據(jù)直線參數(shù)方程的幾何意義,利用韋達(dá)定理可得結(jié)果.【詳解】(1)由,得,所以曲線的直角坐標(biāo)方程為,即,直線的普通方程為.(2)將直線的參數(shù)方程代入并化簡(jiǎn)、整理,得.因?yàn)橹本€與曲線交于,兩點(diǎn).所以,解得.由根與系數(shù)的關(guān)系,得,.因?yàn)辄c(diǎn)的直角坐標(biāo)為,在直線上.所以,解得,此時(shí)滿足.且,故..【點(diǎn)睛】參數(shù)方程主要通過(guò)代入法或者已知恒等式(如等三角恒等式)消去參數(shù)化為普通方程,通過(guò)選取相應(yīng)的參數(shù)可以把普通方程化為參數(shù)方程,利用關(guān)系式,等可以把極坐標(biāo)方程與直角坐標(biāo)方程互化,這類問(wèn)題一般我們可以先把曲線方程化為直角坐標(biāo)方程,用直角坐標(biāo)方程解決相應(yīng)問(wèn)題.20、(1)遞減區(qū)間為(-1,0),遞增區(qū)間為(2)見(jiàn)解析【解析】
(1)根據(jù)函數(shù)解析式,先求得導(dǎo)函數(shù),由是函數(shù)的極值點(diǎn)可求得參數(shù).求得函數(shù)定義域,并根據(jù)導(dǎo)函數(shù)的符號(hào)即可判斷單調(diào)區(qū)間.(2)當(dāng)時(shí),.代入函數(shù)解析式放縮為,代入證明的不等式可化為,構(gòu)造函數(shù),并求得,由函數(shù)單調(diào)性及零點(diǎn)存在定理可知存在唯一的,使得成立,因而求得函數(shù)的最小值,由對(duì)數(shù)式變形化簡(jiǎn)可證明,即成立,原不等式得證.【詳解】(1)函數(shù)可求得,則解得所以,定義域?yàn)?,在單調(diào)遞增,而,∴當(dāng)時(shí)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大學(xué)生態(tài)(資源循環(huán))試題及答案
- 2026年?yáng)|營(yíng)科技職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試備考題庫(kù)有答案解析
- 2026年德州職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性考試參考題庫(kù)帶答案解析
- 2026年安徽郵電職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試備考試題帶答案解析
- 2026年湖北水利水電職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)筆試模擬試題帶答案解析
- 2026年廣州衛(wèi)生職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性考試備考題庫(kù)有答案解析
- 2026年廣東農(nóng)工商職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)筆試備考試題帶答案解析
- 2026年海南經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試備考題庫(kù)有答案解析
- 2026年滄州職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性考試備考題庫(kù)帶答案解析
- 2026年成都職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性考試備考試題有答案解析
- 2025至2030年中國(guó)移動(dòng)充電車行業(yè)市場(chǎng)全景評(píng)估及發(fā)展策略分析報(bào)告
- 2025-2030年中國(guó)新能源物流車行業(yè)市場(chǎng)深度分析及發(fā)展前景與投資機(jī)會(huì)研究報(bào)告
- 透析患者低血壓的護(hù)理查房課件
- GH/T 1373-2022梳棉胎加工技術(shù)要求
- 門(mén)衛(wèi)值班安全協(xié)議書(shū)
- 期貨開(kāi)戶測(cè)試題及答案
- 幼兒園教師團(tuán)隊(duì)培訓(xùn)講座
- 幼兒心理與行為觀察指導(dǎo)
- 心內(nèi)科急危重癥急救
- 2024年7月國(guó)家開(kāi)放大學(xué)法學(xué)本科《國(guó)際經(jīng)濟(jì)法》期末紙質(zhì)考試試題及答案
- 瓶裝液化氣送氣工培訓(xùn)
評(píng)論
0/150
提交評(píng)論