2026屆江西省玉山縣一中高三上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第1頁
2026屆江西省玉山縣一中高三上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第2頁
2026屆江西省玉山縣一中高三上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第3頁
2026屆江西省玉山縣一中高三上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第4頁
2026屆江西省玉山縣一中高三上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆江西省玉山縣一中高三上數(shù)學(xué)期末質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)為坐標(biāo)原點,是以為焦點的拋物線上任意一點,是線段上的點,且,則直線的斜率的最大值為()A.1 B. C. D.2.幻方最早起源于我國,由正整數(shù)1,2,3,……,這個數(shù)填入方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形數(shù)陣就叫階幻方.定義為階幻方對角線上所有數(shù)的和,如,則()A.55 B.500 C.505 D.50503.若函數(shù)在處取得極值2,則()A.-3 B.3 C.-2 D.24.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位5.已知等差數(shù)列的前n項和為,且,,若(,且),則i的取值集合是()A. B. C. D.6.如圖,在中,點為線段上靠近點的三等分點,點為線段上靠近點的三等分點,則()A. B. C. D.7.已知命題:任意,都有;命題:,則有.則下列命題為真命題的是()A. B. C. D.8.在平行六面體中,M為與的交點,若,,則與相等的向量是()A. B. C. D.9.古希臘數(shù)學(xué)家畢達(dá)哥拉斯在公元前六世紀(jì)發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機(jī)分為兩組,一組2個,另一組3個,則6和28恰好在同一組的概率為A. B. C. D.10.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.11.已知定點都在平面內(nèi),定點是內(nèi)異于的動點,且,那么動點在平面內(nèi)的軌跡是()A.圓,但要去掉兩個點 B.橢圓,但要去掉兩個點C.雙曲線,但要去掉兩個點 D.拋物線,但要去掉兩個點12.過直線上一點作圓的兩條切線,,,為切點,當(dāng)直線,關(guān)于直線對稱時,()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為橢圓的左、右焦點,點在橢圓上移動時,的內(nèi)心的軌跡方程為__________.14.在長方體中,,則異面直線與所成角的余弦值為()A. B. C. D.15.命題“”的否定是______.16.在一底面半徑和高都是的圓柱形容器中盛滿小麥,有一粒帶麥銹病的種子混入了其中.現(xiàn)從中隨機(jī)取出的種子,則取出了帶麥銹病種子的概率是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點和橢圓.直線與橢圓交于不同的兩點,.(1)當(dāng)時,求的面積;(2)設(shè)直線與橢圓的另一個交點為,當(dāng)為中點時,求的值.18.(12分)已知,均為正數(shù),且.證明:(1);(2).19.(12分)某商場以分期付款方式銷售某種商品,根據(jù)以往資料統(tǒng)計,顧客購買該商品選擇分期付款的期數(shù)的分布列為:2340.4其中,(Ⅰ)求購買該商品的3位顧客中,恰有2位選擇分2期付款的概率;(Ⅱ)商場銷售一件該商品,若顧客選擇分2期付款,則商場獲得利潤l00元,若顧客選擇分3期付款,則商場獲得利潤150元,若顧客選擇分4期付款,則商場獲得利潤200元.商場銷售兩件該商品所獲的利潤記為(單位:元)(?。┣蟮姆植剂?;(ⅱ)若,求的數(shù)學(xué)期望的最大值.20.(12分)在中,.(1)求的值;(2)點為邊上的動點(不與點重合),設(shè),求的取值范圍.21.(12分)已知離心率為的橢圓經(jīng)過點.(1)求橢圓的方程;(2)薦橢圓的右焦點為,過點的直線與橢圓分別交于,若直線、、的斜率成等差數(shù)列,請問的面積是否為定值?若是,求出此定值;若不是,請說明理由.22.(10分)已知函數(shù),,設(shè).(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;(2)設(shè)方程(其中為常數(shù))的兩根分別為,,證明:.(注:是的導(dǎo)函數(shù))

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

設(shè),因為,得到,利用直線的斜率公式,得到,結(jié)合基本不等式,即可求解.【詳解】由題意,拋物線的焦點坐標(biāo)為,設(shè),因為,即線段的中點,所以,所以直線的斜率,當(dāng)且僅當(dāng),即時等號成立,所以直線的斜率的最大值為1.故選:A.【點睛】本題主要考查了拋物線的方程及其應(yīng)用,直線的斜率公式,以及利用基本不等式求最值的應(yīng)用,著重考查了推理與運算能力,屬于中檔試題.2、C【解析】

因為幻方的每行、每列、每條對角線上的數(shù)的和相等,可得,即得解.【詳解】因為幻方的每行、每列、每條對角線上的數(shù)的和相等,所以階幻方對角線上數(shù)的和就等于每行(或每列)的數(shù)的和,又階幻方有行(或列),因此,,于是.故選:C【點睛】本題考查了數(shù)陣問題,考查了學(xué)生邏輯推理,數(shù)學(xué)運算的能力,屬于中檔題.3、A【解析】

對函數(shù)求導(dǎo),可得,即可求出,進(jìn)而可求出答案.【詳解】因為,所以,則,解得,則.故選:A.【點睛】本題考查了函數(shù)的導(dǎo)數(shù)與極值,考查了學(xué)生的運算求解能力,屬于基礎(chǔ)題.4、D【解析】

直接根據(jù)三角函數(shù)的圖象平移規(guī)則得出正確的結(jié)論即可;【詳解】解:函數(shù),要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個單位.故選:D.【點睛】本題考查三角函數(shù)圖象平移的應(yīng)用問題,屬于基礎(chǔ)題.5、C【解析】

首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設(shè)公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.6、B【解析】

,將,代入化簡即可.【詳解】.故選:B.【點睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運算、數(shù)乘運算,考查學(xué)生的運算能力,是一道中檔題.7、B【解析】

先分別判斷命題真假,再由復(fù)合命題的真假性,即可得出結(jié)論.【詳解】為真命題;命題是假命題,比如當(dāng),或時,則不成立.則,,均為假.故選:B【點睛】本題考查復(fù)合命題的真假性,判斷簡單命題的真假是解題的關(guān)鍵,屬于基礎(chǔ)題.8、D【解析】

根據(jù)空間向量的線性運算,用作基底表示即可得解.【詳解】根據(jù)空間向量的線性運算可知因為,,則即,故選:D.【點睛】本題考查了空間向量的線性運算,用基底表示向量,屬于基礎(chǔ)題.9、B【解析】

推導(dǎo)出基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),由此能求出6和28恰好在同一組的概率.【詳解】解:將五個“完全數(shù)”6,28,496,8128,33550336,隨機(jī)分為兩組,一組2個,另一組3個,基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),∴6和28恰好在同一組的概率.故選:B.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.10、B【解析】

由題意得出的值,進(jìn)而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計算較為方便,考查計算能力,屬于基礎(chǔ)題.11、A【解析】

根據(jù)題意可得,即知C在以AB為直徑的圓上.【詳解】,,,又,,平面,又平面,故在以為直徑的圓上,又是內(nèi)異于的動點,所以的軌跡是圓,但要去掉兩個點A,B故選:A【點睛】本題主要考查了線面垂直、線線垂直的判定,圓的性質(zhì),軌跡問題,屬于中檔題.12、C【解析】

判斷圓心與直線的關(guān)系,確定直線,關(guān)于直線對稱的充要條件是與直線垂直,從而等于到直線的距離,由切線性質(zhì)求出,得,從而得.【詳解】如圖,設(shè)圓的圓心為,半徑為,點不在直線上,要滿足直線,關(guān)于直線對稱,則必垂直于直線,∴,設(shè),則,,∴,.故選:C.【點睛】本題考查直線與圓的位置關(guān)系,考查直線的對稱性,解題關(guān)鍵是由圓的兩條切線關(guān)于直線對稱,得出與直線垂直,從而得就是圓心到直線的距離,這樣在直角三角形中可求得角.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

考查更為一般的問題:設(shè)P為橢圓C:上的動點,為橢圓的兩個焦點,為△PF1F2的內(nèi)心,求點I的軌跡方程.解法一:如圖,設(shè)內(nèi)切圓I與F1F2的切點為H,半徑為r,且F1H=y,F(xiàn)2H=z,PF1=x+y,PF2=x+z,,則.直線IF1與IF2的斜率之積:,而根據(jù)海倫公式,有△PF1F2的面積為因此有.再根據(jù)橢圓的斜率積定義,可得I點的軌跡是以F1F2為長軸,離心率e滿足的橢圓,其標(biāo)準(zhǔn)方程為.解法二:令,則.三角形PF1F2的面積:,其中r為內(nèi)切圓的半徑,解得.另一方面,由內(nèi)切圓的性質(zhì)及焦半徑公式得:從而有.消去θ得到點I的軌跡方程為:.本題中:,代入上式可得軌跡方程為:.14、C【解析】

根據(jù)確定是異面直線與所成的角,利用余弦定理計算得到答案.【詳解】由題意可得.因為,所以是異面直線與所成的角,記為,故.故選:.【點睛】本題考查了異面直線夾角,意在考查學(xué)生的空間想象能力和計算能力.15、,【解析】

根據(jù)特稱命題的否定為全稱命題得到結(jié)果即可.【詳解】解:因為特稱命題的否定是全稱命題,所以,命題,則該命題的否定是:,故答案為:,.【點睛】本題考查全稱命題與特稱命題的否定關(guān)系,屬于基礎(chǔ)題.16、【解析】

求解占圓柱形容器的的總?cè)莘e的比例求解即可.【詳解】解:由題意可得:取出了帶麥銹病種子的概率.故答案為:.【點睛】本題主要考查了體積類的幾何概型問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或【解析】

(1)聯(lián)立直線的方程和橢圓方程,求得交點的橫坐標(biāo),由此求得三角形的面積.(2)法一:根據(jù)的坐標(biāo)求得的坐標(biāo),將的坐標(biāo)都代入橢圓方程,化簡后求得的坐標(biāo),進(jìn)而求得的值.法二:設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,化簡后寫出根與系數(shù)關(guān)系,結(jié)合求得點的坐標(biāo),進(jìn)而求得的值.【詳解】(1)設(shè),,若,則直線的方程為,由,得,解得,,設(shè)直線與軸交于點,則且.(2)法一:設(shè)點因為,,所以又點,都在橢圓上,所以解得或所以或.法二:設(shè)顯然直線有斜率,設(shè)直線的方程為由,得所以又解得或所以或所以或.【點睛】本小題主要考查直線和橢圓的位置關(guān)系,考查橢圓中三角形面積的求法,考查運算求解能力,屬于中檔題.18、(1)見解析(2)見解析【解析】

(1)由進(jìn)行變換,得到,兩邊開方并化簡,證得不等式成立.(2)將化為,然后利用基本不等式,證得不等式成立.【詳解】(1),兩邊加上得,即,當(dāng)且僅當(dāng)時取等號,∴.(2).當(dāng)且僅當(dāng)時取等號.【點睛】本小題主要考查利用基本不等式證明不等式成立,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.19、(Ⅰ)0.288(Ⅱ)(?。┮娊馕觯áⅲ?shù)學(xué)期望的最大值為280【解析】

(Ⅰ)根據(jù)題意,設(shè)購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,由獨立重復(fù)事件的特點得出,利用二項分布的概率公式,即可求出結(jié)果;(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,根據(jù)離散型分布求出概率和的分布列;(ⅱ)由題意知,,解得,根據(jù)的分布列,得出的數(shù)學(xué)期望,結(jié)合,即可算出的最大值.【詳解】解:(Ⅰ)設(shè)購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,則,則,故購買該商品的3位顧客中,恰有2位選擇分2期付款的概率為0.288.(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,,,,,的分布列為:2002503003504000.16(ⅱ),由題意知,,,,,又,即,解得,,,當(dāng)時,的最大值為280,所以的數(shù)學(xué)期望的最大值為280.【點睛】本題考查獨立重復(fù)事件和二項分布的應(yīng)用,以及離散型分布列和數(shù)學(xué)期望,考查計算能力.20、(1)(2)【解析】

(1)先利用同角的三角函數(shù)關(guān)系求得,再由求解即可;(2)在中,由正弦定理可得,則,再由求解即可.【詳解】解:(1)在中,,所以,所以(2)由(1)可知,所以,在中,因為,所以,因為,所以,所以.【點睛】本題考查已知三角函數(shù)值求值,考查正弦定理的應(yīng)用.21、(1);(2)是,【解析】

(1)根據(jù)及可得,再將點代入橢圓的方程與聯(lián)立解出,即可求出橢圓的方程;(2)可設(shè)所在直線的方程為,,,,將直線的方程與橢圓的方程聯(lián)立,用根與系數(shù)的關(guān)系求出,然后將直線、、的斜率、、分別用表示,利用可求出,從而可確定點恒在一條直線上,結(jié)合圖形即可求出的面積.【詳解】(1)因為橢圓的離心率為,所以,即,又,所以,①因為點在橢圓上,所以,②由①②解得,所以橢圓C的方程為.(1)可知,,可設(shè)所在直線的方程為,由,得,設(shè),,,則,,設(shè)直線、、的斜率分別為、、,因為三點共線,所以,即,所以,又,因為直線、、的斜率成等差數(shù)列,所以,即,化簡得,即點恒在一條直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論