2026屆四川省遂寧市高中高一上數學期末調研試題含解析_第1頁
2026屆四川省遂寧市高中高一上數學期末調研試題含解析_第2頁
2026屆四川省遂寧市高中高一上數學期末調研試題含解析_第3頁
2026屆四川省遂寧市高中高一上數學期末調研試題含解析_第4頁
2026屆四川省遂寧市高中高一上數學期末調研試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆四川省遂寧市高中高一上數學期末調研試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數在上的部分圖象如圖所示,則的值為A. B.C. D.2.已知全集,集合,,則等于()A. B.C. D.3.若點在角的終邊上,則()A. B.C. D.4.函數的最小正周期為,若其圖象向左平移個單位后得到的函數為奇函數,則函數的圖象()A.關于點對稱 B.關于點對稱C.關于直線對稱 D.關于直線對稱5.函數的部分圖象如圖所示,則的值為()A. B.C. D.6.已知函數,則“”是“函數在區(qū)間上單調遞增”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.土地沙漠化的治理,對中國乃至世界來說都是一個難題,我國創(chuàng)造了治沙成功案例——毛烏素沙漠.某沙漠經過一段時間的治理,已有1000公頃植被,假設每年植被面積以20%的增長率呈指數增長,按這種規(guī)律發(fā)展下去,則植被面積達到4000公頃至少需要經過的年數為()(參考數據:?。〢.6 B.7C.8 D.98.函數(A,ω,φ為常數,A>0,ω>0,)的部分圖象如圖所示,則()A. B.C. D.9.要得到函數y=cos的圖象,只需將函數y=cos2的圖象()A.向左平移個單位長度 B.向左平移個單位長度C.向右平移個單位長度 D.向右平移個單位長度10.一個孩子的身高與年齡(周歲)具有相關關系,根據所采集的數據得到線性回歸方程,則下列說法錯誤的是()A.回歸直線一定經過樣本點中心B.斜率的估計值等于6.217,說明年齡每增加一個單位,身高就約增加6.217個單位C.年齡為10時,求得身高是,所以這名孩子的身高一定是D.身高與年齡成正相關關系二、填空題:本大題共6小題,每小題5分,共30分。11.設是定義在上的函數,若存在兩個不等實數,使得,則稱函數具有性質,那么下列函數:①;②;③;具有性質的函數的個數為____________12.一條從西向東的小河的河寬為3.5海里,水的流速為3海里/小時,如果輪船希望用10分鐘的時間從河的南岸垂直到達北岸,輪船的速度應為______;13.已知,則____________.(可用對數符號作答)14.已知是定義在上的奇函數,當時,,則時,__________15.若,,.,則a,b,c的大小關系用“”表示為________________.16.已知集合A={﹣1,2,3},f:x→2x是集合A到集合B的映射,則寫出一個滿足條件的集合B_____三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數.(1)若在上單調遞增,求的取值范圍;(2)討論函數的零點個數.18.已知函數(1)求的最小正周期;(2)求的單調遞增區(qū)間19.某工廠進行廢氣回收再利用,把二氧化硫轉化為一種可利用的化工產品.已知該單位每月的處理量最少為200噸,最多為500噸,月處理成本(元)與月處理量(噸)之間的函數關系可近似地表示為,且每處理一噸二氧化硫得到可利用的化工產品價值為100元.(1)該單位每月處理量為多少噸時,才能使每噸的月平均處理成本最低?(2)該工廠每月進行廢氣回收再利用能否獲利?如果獲利,求月最大利潤;如果不獲利,求月最大虧損額.20.已知函數.(1)求函數的定義域;(2)若對任意恒有,求實數的取值范圍.21.已知直線(1)求證:直線過定點(2)求過(1)的定點且垂直于直線直線方程.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由圖象最值和周期可求得和,代入可求得,從而得到函數解析式,代入可求得結果.【詳解】由圖象可得:,代入可得:本題正確選項:【點睛】本題考查三角函數值的求解,關鍵是能夠根據正弦函數的圖象求解出函數的解析式.2、D【解析】先求得集合B的補集,再根據交集運算的定義,即可求得答案.【詳解】由題意得:,所以,故選:D3、A【解析】利用三角函數的定義可求得結果.【詳解】由三角函數定義可得.故選:A.4、C【解析】求得,求出變換后的函數解析式,根據已知條件求出的值,然后利用代入檢驗法可判斷各選項的正誤.【詳解】由題意可得,則,將函數的圖象向左平移個單位后,得到函數的圖象,由于函數為奇函數,則,所以,,,則,故,因為,,故函數的圖象關于直線對稱.故選:C.5、C【解析】由函數的部分圖象得到函數的最小正周期,求出,代入求出值,則函數的解析式可求,取可得的值.【詳解】由圖象可得函數的最小正周期為,則.又,則,則,,則,,,則,,則,.故選:C.【點睛】方法點睛:根據三角函數的部分圖象求函數解析式的方法:(1)求、,;(2)求出函數的最小正周期,進而得出;(3)取特殊點代入函數可求得的值.6、A【解析】先由在區(qū)間上單調遞增,求出的取值范圍,再根據充分條件,必要條件的定義即可判斷.【詳解】解:的對稱軸為:,若在上單調遞增,則,即,在區(qū)間上單調遞增,反之,在區(qū)間上單調遞增,,故“”是“函數在區(qū)間上單調遞增”的充分不必要條件.故選:A.7、C【解析】根據題意列出不等式,利用對數換底公式,計算出結果.【詳解】經過年后,植被面積為公頃,由,得.因為,所以,又因為,故植被面積達到4000公頃至少需要經過的年數為8.故選:C8、B【解析】根據函數圖像易得,,求得,再將點代入即可求得得值.【詳解】解:由圖可知,,則,所以,所以,將代入得,所以,又,所以.故選:B.9、B【解析】直接利用三角函數的平移變換求解.【詳解】因函數y=cos,所以要得到函數y=cos的圖象,只需將函數y=cos2的圖象向左平移個單位長度,故選:B【點睛】本題主要考查三角函數的圖象的平移變換,屬于基礎題.10、C【解析】利用線性回歸方程過樣本中心點可判斷A;由回歸方程求出的數值是估計值可判斷B、C;根據回歸方程的一次項系數可判斷D;【詳解】對于A,線性回歸方程一定過樣本中心點,故A正確;對于B,由于斜率是估計值,可知B正確;對于C,當時,求得身高是是估計值,故C錯誤;對于D,線性回歸方程的一次項系數大于零,故身高與年齡成正相關關系,故D正確;故選:C【點睛】本題考查了線性回歸方程的特征,需掌握這些特征,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據題意,找出存在的點,如果找不出則需證明:不存在,,使得【詳解】①因為函數是奇函數,可找關于原點對稱的點,比如,存在;②假設存在不相等,,使得,即,得,矛盾,故不存在;③函數為偶函數,,令,,則,存在故答案為:【點睛】關鍵點點睛:證明存在性命題,只需找到滿足條件的特殊值即可,反之需要證明不存在,一般考慮反證法,先假設存在,推出矛盾即可,屬于中檔題.12、15海里/小時【解析】先求出船的實際速度,再利用勾股定理得到輪船的速度.【詳解】設船的實際速度為,船速,水的流速,則海里/小時,∴海里/小時.故答案為:15海里/小時13、【解析】根據對數運算法則得到,再根據對數運算法則及三角函數弦化切進行計算.【詳解】∵,∴,又,.故答案為:14、【解析】∵函數f(x)為奇函數∴f(-x)=-f(x)∵當x>0時,f(x)=log2x∴當x<0時,f(x)=-f(-x)=-log2(-x).故答案為.點睛:本題根據函數為奇函數可推斷出f(-x)=-f(x)進而根據x>0時函數的解析式即可求得x<0時,函數的解析式15、cab【解析】根據指數函數的單調性以及對數函數的單調性分別判斷出的取值范圍,從而可得結果【詳解】,即;,即;,即,綜上可得,故答案為:.【點睛】方法點睛:解答比較大小問題,常見思路有兩個:一是判斷出各個數值所在區(qū)間(一般是看三個區(qū)間);二是利用函數的單調性直接解答;數值比較多的比大小問題也可以兩種方法綜合應用.16、{﹣2,4,6}【解析】先利用應關系f:x→2x,根據原像求像的值,像的值即是滿足條件的集合B中元素【詳解】∵對應關系為f:x→2x,={-1,2,3},∴2x=-2,4,6共3個值,則-2,4,6這三個元素一定在集合B中,根據映射的定義集合B中還可能有其他元素,我們可以取其中一個滿足條件的集合B,不妨取集合B={-2,4,6}.故答案為:{-2,4,6}【點睛】本題考查映射的概念,像與原像的定義,集合A中所有元素的集合即為集合B中元素集合.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)當時,有一個零點;當時,且當時,有兩個零點,當時,有一個零點【解析】(1)由、都是單調遞增函數可得的單調性,利用單調性可得答案;(2)時有一個零點;當時,利用單獨單調性求得,分和討論可得答案.【小問1詳解】當時,單調遞增,當時,單調遞增,若在上單調遞增,只需,.【小問2詳解】當時,,此時,即,有一個零點;當時,,此時在上單調遞增,,若,即,此時有一個零點;若,即,此時無零點,故當時,有兩個零點,當時,有一個零點18、(1)(2)單調遞增區(qū)間是【解析】(1)根據公式可求函數的最小正周期;(2)利用整體法可求函數的增區(qū)間.【小問1詳解】∵,∴最小正周期【小問2詳解】令,解得,∴的單調遞增區(qū)間是19、(1)400噸;(2)該工廠每月廢氣回收再利用不獲利,月最大虧損額為27500元.【解析】(1)由題意可知,二氧化碳每噸的平均處理成本為,化簡后再利用基本不等式即可求出最小值.(2)該單位每月獲利為元,則,由的范圍,利用二次函數的性質得到的范圍即可得結論【詳解】(1)由題意可知,二氧化碳每噸的平均處理成本為,當且僅當,即時等號成立,故該單位月處理量為400噸時,才能使每噸的平均處理成本最低,最低成本為150元.(2)不獲利,設該單位每月獲利為元,則,因為,所以時取最大值,時取最小值,所以.故該工廠每月廢氣回收再利用不獲利,月最大虧損額為27500元.【點睛】方法點睛:在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數)、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應用,否則會出現錯誤.20、(1)答案見解析;(2).【解析】(1)根據對數的真數為正即可求解;(2)對任意恒有對恒成立,參變分離即可求解a的范圍.【小問1詳解】由得,,等價于,∵方程的,當,即時,恒成立,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論