河南省鄭州二中等八校2026屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
河南省鄭州二中等八校2026屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
河南省鄭州二中等八校2026屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
河南省鄭州二中等八校2026屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
河南省鄭州二中等八校2026屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河南省鄭州二中等八校2026屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知正實(shí)數(shù)a,b滿足,若不等式對任意的實(shí)數(shù)x恒成立,則實(shí)數(shù)m的取值范圍是()A. B.C. D.2.已知數(shù)列中,,則()A.2 B.C. D.3.?dāng)?shù)列是等比數(shù)列,是其前n項之積,若,則的值是()A.1024 B.256C.2 D.5124.已知,若,則()A. B.2C. D.e5.如圖,、分別是橢圓的左頂點(diǎn)和上頂點(diǎn),從橢圓上一點(diǎn)向軸作垂線,垂足為右焦點(diǎn),且,點(diǎn)到右準(zhǔn)線的距離為,則橢圓方程為()A. B.C. D.6.“楊輝三角”是中國古代重要的數(shù)學(xué)成就,它比西方的“帕斯卡三角形”早了多年,如圖是由“楊輝三角”拓展而成的三角形數(shù)陣,記為圖中虛線上的數(shù),,,,…構(gòu)成的數(shù)列的第項,則的值為()A. B.C. D.7.已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),是直線與拋物線的一個交點(diǎn),若,則()A. B.3C. D.28.“橢圓的離心率為”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件9.設(shè)命題,,則為().A., B.,C., D.,10.已知等差數(shù)列的公差,是與的等比中項,則()A. B.C. D.11.在的展開式中,的系數(shù)為()A. B.5C. D.1012.用反證法證明命題“a,b∈N,如果ab可以被5整除,那么a,b至少有1個能被5整除.”假設(shè)內(nèi)容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a不能被5整除 D.a,b有1個不能被5整除二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的準(zhǔn)線方程是,則實(shí)數(shù)___________.14.已知定點(diǎn),點(diǎn)在直線上運(yùn)動,則,兩點(diǎn)的最短距離為________15.設(shè)過點(diǎn)K(-1,0)的直線l與拋物線C:y2=4x交于A、B兩點(diǎn),為拋物線的焦點(diǎn),若|BF|=2|AF|,則cos∠AFB=_______16.已知圓,則圓心坐標(biāo)為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓E:(a,b>0)過M(2,),N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),(1)求橢圓E的方程;(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點(diǎn)A,B,且?若存在,寫出該圓的方程,并求|AB|的取值范圍,若不存在說明理由.18.(12分)某高校自主招生考試分筆試與面試兩部分,每部分考試成績只記“通過”與“不通過”,兩部分考試都“通過”者,則考試“通過”,并給予錄取.甲、乙兩人在筆試中“通過”的概率依次為,在面試中“通過”的概率依次為,筆試和面試是否“通過”是獨(dú)立的,那么(1)甲、乙兩人都參加此高校的自主招生考試,誰獲得錄取的可能性大?(2)甲、乙兩人都參加此高校的自主招生考試,求恰有一人獲得錄取的概率.19.(12分)已知橢圓與拋物線有一個相同的焦點(diǎn),且該橢圓的離心率為,(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程:(Ⅱ)求過點(diǎn)的直線與該橢圓交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求的面積.20.(12分)已知數(shù)列是公比為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列通項公式;(2)若,求數(shù)列的前項和.21.(12分)在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且短軸長為2.(1)求橢圓C的方程;(2)設(shè)橢圓C的上頂點(diǎn)為B,右焦點(diǎn)為F,直線l與橢圓交于M,N兩點(diǎn),問是否存在直線l,使得F為的垂心,若存在,求出直線l的方程;若不存在,說明理由.22.(10分)已知圓,直線(1)求證:直線與圓恒有兩個交點(diǎn);(2)設(shè)直線與圓的兩個交點(diǎn)為、,求的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用基本不等式求出的最小值16,分離參數(shù)即可.【詳解】因?yàn)?,,,所以,?dāng)且僅當(dāng),即,時取等號由題意,得,即對任意的實(shí)數(shù)x恒成立,又,所以,即故選:D2、A【解析】根據(jù)數(shù)列的周期性即可求解.【詳解】由得,顯然該數(shù)列中的數(shù)從開始循環(huán),數(shù)列的周期是,所以.故選:A.3、D【解析】設(shè)數(shù)列的公比為q,由已知建立方程求得q,再利用等比數(shù)列的通項公式可求得答案.【詳解】解:因?yàn)閿?shù)列是等比數(shù)列,是其前n項之積,,設(shè)數(shù)列的公比為q,所以,解得,所以,故選:D.4、B【解析】求得導(dǎo)函數(shù),則,計算即可得出結(jié)果.【詳解】,.,解得:.故選:B5、A【解析】設(shè)橢圓方程為,設(shè)該橢圓的焦距為,則,求出點(diǎn)的坐標(biāo),根據(jù)可得出,可得出,,結(jié)合已知條件求得的值,可得出、的值,即可得出橢圓的方程.【詳解】設(shè)橢圓方程為,設(shè)該橢圓的焦距為,則,由圖可知,點(diǎn)第一象限,將代入橢圓方程得,得,所以,點(diǎn),易知點(diǎn)、,,,因?yàn)椋瑒t,得,可得,則,點(diǎn)到右準(zhǔn)線的距離為為,則,,因此,橢圓的方程為.故選:A.6、B【解析】根據(jù)楊輝三角可得數(shù)列的遞推公式,結(jié)合累加法可得數(shù)列的通項公式與.【詳解】由已知可得數(shù)列的遞推公式為,且,且,故,,,,,等式左右兩邊分別相加得,,故選:B.7、D【解析】根據(jù)拋物線的定義求得,由此求得的長.【詳解】過作,垂足為,設(shè)與軸交點(diǎn)為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點(diǎn)睛】本小題主要考查拋物線定義,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.8、C【解析】討論橢圓焦點(diǎn)的位置,根據(jù)離心率分別求出參數(shù)m,由充分必要性的定義判斷條件間的充分、必要關(guān)系.【詳解】當(dāng)橢圓的焦點(diǎn)在軸上時,,得;當(dāng)橢圓的焦點(diǎn)在軸上時,,得故“橢圓的離心率為”是“”的必要不充分條件故選:C.9、B【解析】根據(jù)全稱命題和特稱命題互為否定,即可得到結(jié)果.【詳解】因?yàn)槊},,所以為,.故選:B.10、C【解析】由等比中項的性質(zhì)及等差數(shù)列通項公式可得即可求.【詳解】由,則,可得.故選:C.11、C【解析】首先寫出展開式的通項公式,然后結(jié)合通項公式確定的系數(shù)即可.【詳解】展開式的通項公式為:,令可得:,則的系數(shù)為:.故選:C.【點(diǎn)睛】二項式定理的核心是通項公式,求解此類問題可以分兩步完成:第一步根據(jù)所給出的條件(特定項)和通項公式,建立方程來確定指數(shù)(求解時要注意二項式系數(shù)中n和r的隱含條件,即n,r均為非負(fù)整數(shù),且n≥r,如常數(shù)項指數(shù)為零、有理項指數(shù)為整數(shù)等);第二步是根據(jù)所求的指數(shù),再求所求解的項12、B【解析】由于反證法是命題的否定的一個運(yùn)用,故用反證法證明命題時,可以設(shè)其否定成立進(jìn)行推證.命題“a,b∈N,如果ab可被5整除,那么a,b至少有1個能被5整除.”的否定是“a,b都不能被5整除”考點(diǎn):反證法二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,根據(jù)其準(zhǔn)線方程即可求得實(shí)數(shù).【詳解】拋物線化為標(biāo)準(zhǔn)方程:,其準(zhǔn)線方程是,而所以,即,故答案為:14、【解析】線段最短,就是說的距離最小,此時直線和直線垂直,可先求的斜率,再求直線的方程,然后與直線聯(lián)立求交點(diǎn)即可【詳解】定點(diǎn),點(diǎn)在直線上運(yùn)動,當(dāng)線段最短時,就是直線和直線垂直,的方程為:,它與聯(lián)立解得,所以的坐標(biāo)是,所以,故答案為:15、【解析】根據(jù)已知設(shè)直線方程為與C聯(lián)立,結(jié)合|BF|=2|AF|,利用韋達(dá)定理計算可得點(diǎn)A,B的坐標(biāo),進(jìn)而求出向量的坐標(biāo),進(jìn)而利用求向量夾角余弦值的方法,即可得到答案.【詳解】令直線的方程為將直線方程代入批物線C:的方程,得令且,所以由拋物線的定義知,由|BF|=2|AF|可知,,則,解得:,,則A,B兩點(diǎn)坐標(biāo)分別為,則則.故答案為:16、【解析】將圓的一般方程配方程標(biāo)準(zhǔn)方程即可.【詳解】圓,即,它的圓心坐標(biāo)是.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,,.【解析】(1)根據(jù)橢圓E:(a,b>0)過M(2,),N(,1)兩點(diǎn),直接代入方程解方程組即可.(2)假設(shè)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點(diǎn)A,B,且,當(dāng)切線斜率存在時,設(shè)該圓的切線方程為,聯(lián)立,根據(jù),結(jié)合韋達(dá)定理運(yùn)算,同時滿足,則存在,否則不存在,當(dāng)切線斜率不存在時,驗(yàn)證即可;在該圓的方程存在時,利用弦長公式結(jié)合韋達(dá)定理得到求解.【詳解】(1)因?yàn)闄E圓E:(a,b>0)過M(2,),N(,1)兩點(diǎn),所以,解得,所以,所以橢圓E的方程為.(2)假設(shè)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點(diǎn)A,B,且,設(shè)該圓的切線方程為,聯(lián)立得,則△=,即,,,要使,需使,即,所以,所以,又,所以,所以,即或,因?yàn)橹本€為圓心在原點(diǎn)的圓的一條切線,所以圓的半徑為,,所以,則所求的圓為,此時圓的切線都滿足或,而當(dāng)切線的斜率不存在時切線為與橢圓的兩個交點(diǎn)為或滿足,綜上,存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點(diǎn)A,B,且.因?yàn)?,所以,,①?dāng)時,,因?yàn)?,所以,所以,所以,?dāng)且僅當(dāng)時取”=”.②當(dāng)時,.③當(dāng)AB的斜率不存在時,兩個交點(diǎn)為或,所以此時,綜上,|AB|的取值范圍為,即:【點(diǎn)睛】思路點(diǎn)睛:1、解決直線與橢圓的位置關(guān)系的相關(guān)問題,其常規(guī)思路是先把直線方程與橢圓方程聯(lián)立,消元、化簡,然后應(yīng)用根與系數(shù)的關(guān)系建立方程,解決相關(guān)問題.涉及弦中點(diǎn)的問題常常用“點(diǎn)差法”解決,往往會更簡單2、設(shè)直線與橢圓的交點(diǎn)坐標(biāo)為A(x1,y1),B(x2,y2),則(k為直線斜率)注意:利用公式計算直線被橢圓截得的弦長是在方程有解的情況下進(jìn)行的,不要忽略判別式大于零18、(1)甲獲得錄取的可能性大;(2)【解析】(1)利用獨(dú)立事件的乘法公式求出甲、乙兩人被錄取的概率并比較大小,即得結(jié)果.(2)應(yīng)用對立事件、獨(dú)立事件的概率求法,結(jié)合互斥事件的加法公式求恰有一人獲得錄取的概率.【小問1詳解】記“甲通過筆試”為事件,“甲通過面試”為事件,“甲獲得錄取”為事件A,“乙通過筆試”為事件,“乙通過面試”為事件,“乙獲得錄取”為事件B,則,,即,所以甲獲得錄取的可能性大.【小問2詳解】記“甲乙兩人恰有一人獲得錄取”為事件C,則.19、(Ⅰ);(Ⅱ)【解析】(Ⅰ)根據(jù)題意可以求出橢圓的焦點(diǎn),再根據(jù)橢圓的離心率公式,求出的值,然后結(jié)合橢圓的關(guān)系求出,最后寫出橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)根據(jù)平面向量共線定理可以得出A,B兩點(diǎn)橫坐標(biāo)和縱坐標(biāo)之間的關(guān)系,再設(shè)出直線AB方程與橢圓方程聯(lián)立,利用根與系數(shù)關(guān)系求出直線AB的斜率,最后根據(jù)三角形面積結(jié)合根與系數(shù)關(guān)系求出的面積.【詳解】(Ⅰ)由題意,設(shè)橢圓的標(biāo)準(zhǔn)方程為,由題意可得,又,,所以橢圓的標(biāo)準(zhǔn)方程為(Ⅱ)設(shè),,由得:,驗(yàn)證易知直線AB的斜率存在,設(shè)直線AB的方程為聯(lián)立橢圓方程,得:,整理得:,得:,將代入得,所以的面積.【點(diǎn)睛】本題考查了求橢圓的標(biāo)準(zhǔn)方程,考查了利用一元二次方程根與系數(shù)關(guān)系求直線斜率和三角形面積問題,考查了數(shù)學(xué)運(yùn)算能力.20、(1);(2).【解析】(1)根據(jù)題意,通過解方程求出公比,即可求解;(2)根據(jù)題意,求出,結(jié)合組合法求和,即可求解.【小問1詳解】根據(jù)題意,設(shè)公比為,且,∵,,∴,解得或(舍),∴.【小問2詳解】根據(jù)題意,得,故,因此.21、(1)(2)存在,【解析】(1)根據(jù)離心率及短軸長,利用橢圓中的關(guān)系可以求出橢圓方程;(2)設(shè)直線的方程,與橢圓方程聯(lián)立,根據(jù)一元二次方程根與系數(shù)關(guān)系,結(jié)合已知和斜率公式,可以求出直線的方程.【小問1詳解】,,,,橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】由已知可得,,,∴,∵,設(shè)直線的方程為:,代入橢圓方程整理得,設(shè),,則,,∵,∴.即,因?yàn)椋?,?.所以,或.又時,直線過點(diǎn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論