貴州省黔東南州2026屆高二上數(shù)學(xué)期末考試模擬試題含解析_第1頁(yè)
貴州省黔東南州2026屆高二上數(shù)學(xué)期末考試模擬試題含解析_第2頁(yè)
貴州省黔東南州2026屆高二上數(shù)學(xué)期末考試模擬試題含解析_第3頁(yè)
貴州省黔東南州2026屆高二上數(shù)學(xué)期末考試模擬試題含解析_第4頁(yè)
貴州省黔東南州2026屆高二上數(shù)學(xué)期末考試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

貴州省黔東南州2026屆高二上數(shù)學(xué)期末考試模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若圓與圓相外切,則的值為()A. B.C.1 D.2.已知集合,,則()A. B.C. D.3.若數(shù)列{an}滿足……,則稱數(shù)列{an}為“半差遞增”數(shù)列.已知“半差遞增”數(shù)列{cn}的前n項(xiàng)和Sn滿足,則實(shí)數(shù)t的取值范圍是()A. B.(-∞,1)C. D.(1,+∞)4.長(zhǎng)方體中,,,,為側(cè)面內(nèi)(含邊界)的動(dòng)點(diǎn),且滿足,則四棱錐體積的最小值為()A. B.C. D.5.命題P:ax2+2x﹣1=0有實(shí)數(shù)根,若¬p是假命題,則實(shí)數(shù)a的取值范圍是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}6.執(zhí)行如圖所示的程序框圖,則輸出S的值是()A. B.C. D.7.命題“,”的否定是A, B.,C., D.,8.直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.相交或相切9.我們知道,償還銀行貸款時(shí),“等額本金還款法”是一種很常見(jiàn)的還款方式,其本質(zhì)是將本金平均分配到每一期進(jìn)行償還,每一期的還款金額由兩部分組成,一部分為每期本金,即貸款本金除以還款期數(shù),另一部分是利息,即貸款本金與已還本金總額的差乘以利率.自主創(chuàng)業(yè)的大學(xué)生張華向銀行貸款的本金為48萬(wàn)元,張華跟銀行約定,按照等額本金還款法,每個(gè)月還一次款,20年還清,貸款月利率為,設(shè)張華第個(gè)月的還款金額為元,則()A.2192 B.C. D.10.我國(guó)古代的數(shù)學(xué)名著《九章算術(shù)》中有“衰分問(wèn)題”:今有女子善織,日自倍,五日織五尺,問(wèn)次日織幾問(wèn)?其意為:一女子每天織布的尺數(shù)是前一天的2倍,5天共織布5尺,請(qǐng)問(wèn)第二天織布的尺數(shù)是()A. B.C. D.11.已知橢圓與橢圓,則下列結(jié)論正確的是()A.長(zhǎng)軸長(zhǎng)相等 B.短軸長(zhǎng)相等C.焦距相等 D.離心率相等12.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為點(diǎn),則點(diǎn)到直線的距離為()A B.C. D.6二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的漸近線方程為,則該雙曲線的離心率為_(kāi)__________;若,則雙曲線的右焦點(diǎn)到漸近線的距離為_(kāi)_________.14.雙曲線上的一點(diǎn)到一個(gè)焦點(diǎn)的距離等于1,那么點(diǎn)到另一個(gè)焦點(diǎn)的距離為_(kāi)________.15.雙曲線的離心率______.16.已知曲線,則曲線在點(diǎn)處的切線方程為_(kāi)___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某城市地鐵公司為鼓勵(lì)人們綠色出行,決定按照乘客經(jīng)過(guò)地鐵站的數(shù)量實(shí)施分段優(yōu)惠政策,不超過(guò)12站的地鐵票價(jià)如下表:乘坐站數(shù)票價(jià)(元)246現(xiàn)有甲、乙兩位乘客同時(shí)從起點(diǎn)乘坐同一輛地鐵,已知他們乘坐地鐵都不超過(guò)12站,且他們各自在每個(gè)站下地鐵的可能性是相同的.(1)若甲、乙兩人共付費(fèi)6元,則甲、乙下地鐵的方案共有多少種?(2)若甲、乙兩人共付費(fèi)8元,則甲比乙先下地鐵的方案共有多少種?18.(12分)某快遞公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表).(1)求這60天每天包裹數(shù)量的平均值和中位數(shù);(2)在這60天中包裹件數(shù)在和的兩組中,用分層抽樣的方法抽取30件,求在這兩組中應(yīng)分別抽取多少件?19.(12分)設(shè)函數(shù).(1)若在點(diǎn)處的切線為,求a,b的值;(2)求的單調(diào)區(qū)間.20.(12分)如圖,圓錐的底面直徑與母線長(zhǎng)均為4,PO是圓錐的高,點(diǎn)C是底面直徑AB所對(duì)弧的中點(diǎn),點(diǎn)D是母線PA的中點(diǎn)(1)求圓錐的表面積;(2)求點(diǎn)B到直線CD的距離21.(12分)如圖,四棱錐中,平面、底面為菱形,為的中點(diǎn).(1)證明:平面;(2)設(shè),菱形的面積為,求二面角的余弦值.22.(10分)如圖所示,在正方體中,點(diǎn),,分別是,,的中點(diǎn)(1)證明:;(2)求直線與平面所成角的大小

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】確定出兩圓的圓心和半徑,然后由兩圓的位置關(guān)系建立方程求解即可.【詳解】由可得,所以圓的圓心為,半徑為,由可得,所以圓的圓心為,半徑為,因?yàn)閮蓤A相外切,所以,解得,故選:D2、B【解析】根據(jù)根式、分式的性質(zhì)求定義域可得集合A,解一元二次不等式求集合B,再由集合的交運(yùn)算求.【詳解】∵,,∴故選:B3、A【解析】根據(jù),利用遞推公式求得數(shù)列的通項(xiàng)公式.再根據(jù)新定義的意義,代入解不等式即可求得實(shí)數(shù)的取值范圍.【詳解】因?yàn)樗援?dāng)時(shí),兩式相減可得,即,所以數(shù)列是以公比的等比數(shù)列當(dāng)時(shí),所以,則由“差半遞增”數(shù)列的定義可知化簡(jiǎn)可得解不等式可得即實(shí)數(shù)的取值范圍為故選:A.4、D【解析】取的中點(diǎn),以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,分析可知點(diǎn)的軌跡是以點(diǎn)、為焦點(diǎn)的橢圓,求出橢圓的方程,可知當(dāng)點(diǎn)為橢圓與棱或的交點(diǎn)時(shí),點(diǎn)到平面的距離取最小值,由此可求得四棱錐體積的最小值.【詳解】取的中點(diǎn),以點(diǎn)為坐標(biāo)原點(diǎn),、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,設(shè)點(diǎn),其中,,則、,因?yàn)槠矫妫矫?,則,所以,,同理可得,所以,,所以點(diǎn)的軌跡是以點(diǎn)、為焦點(diǎn),且長(zhǎng)軸長(zhǎng)為的橢圓的一部分,則,,,所以,點(diǎn)的軌跡方程為,點(diǎn)到平面的距離為,當(dāng)點(diǎn)為曲線與棱或棱的交點(diǎn)時(shí),點(diǎn)到平面的距離取最小值,將代入方程得,因此,四棱錐體積的最小值為.故選:D.5、C【解析】根據(jù)是假命題,判斷出是真命題.對(duì)分成,和兩種情況,結(jié)合方程有實(shí)數(shù)根,求得的取值范圍.詳解】┐p是假命題,則p是真命題,∴ax2+2x﹣1=0有實(shí)數(shù)根,當(dāng)a=0時(shí),方程為2x﹣1=0,解得x=0.5,有根,符合題意;當(dāng)a≠0時(shí),方程有根,等價(jià)于△=4+4a≥0,∴a≥﹣1且,綜上所述,a的可能取值為a≥﹣1故選:C【點(diǎn)睛】本小題主要考查根據(jù)命題否定的真假性求參數(shù),屬于基礎(chǔ)題.6、C【解析】按照程序框圖的流程進(jìn)行計(jì)算.【詳解】,故輸出S的值為.故選:C7、C【解析】特稱命題的否定是全稱命題,并將結(jié)論加以否定,所以命題的否定為:,考點(diǎn):全稱命題與特稱命題8、A【解析】由直線恒過(guò)定點(diǎn),且定點(diǎn)圓內(nèi),從而即可判斷直線與圓相交.【詳解】解:因?yàn)橹本€恒過(guò)定點(diǎn),而,所以定點(diǎn)在圓內(nèi),所以直線與圓相交,故選:A.9、D【解析】計(jì)算出每月應(yīng)還的本金數(shù),再計(jì)算第n個(gè)月已還多少本金,由此可計(jì)算出個(gè)月的還款金額.【詳解】由題意可知:每月還本金為2000元,設(shè)張華第個(gè)月的還款金額為元,則,故選:D10、C【解析】根據(jù)等比數(shù)列求和公式求出首項(xiàng)即可得解.【詳解】由題可得該女子每天織布的尺數(shù)成等比數(shù)列,設(shè)其首項(xiàng)為,公比為,則,解得所以第二天織布的尺數(shù)為.故選:C11、C【解析】利用,可得且,即可得出結(jié)論【詳解】∵,且,橢圓與橢圓的關(guān)系是有相等的焦距故選:C12、C【解析】按照空間中點(diǎn)到直線的距離公式直接求解.【詳解】由題意,,,的方向向量,,則點(diǎn)到直線的距離為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.3【解析】由漸近線方程知,結(jié)合雙曲線參數(shù)關(guān)系及離心率的定義求雙曲線的離心率,由已知可得右焦點(diǎn)為,應(yīng)用點(diǎn)線距離公式求距離.【詳解】由題設(shè),,則,當(dāng)時(shí),,則雙曲線為,故右焦點(diǎn)為,所以右焦點(diǎn)到漸近線的距離為.故答案為:,3.14、【解析】首先將已知的雙曲線方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,然后根據(jù)雙曲線的定義知雙曲線上的點(diǎn)到兩個(gè)焦點(diǎn)的距離之差的絕對(duì)值為,即可求出點(diǎn)到另一個(gè)焦點(diǎn)的距離為17.考點(diǎn):雙曲線的定義.15、【解析】根據(jù)雙曲線方程直接可得離心率.【詳解】由,可得,,故,離心率,故答案為:.16、【解析】求解導(dǎo)函數(shù),然后根據(jù)導(dǎo)數(shù)的幾何意義求出切線斜率,并計(jì)算,利用點(diǎn)斜式寫(xiě)出切線方程.【詳解】,由題意,切線的斜率為,,所以曲線在點(diǎn)處的切線方程為,即.故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)24(種)(2)21(種)【解析】(1)先根據(jù)共付費(fèi)6元得一人付費(fèi)2元一人付費(fèi)4元,再確定人與乘坐站數(shù),即可得結(jié)果;(2)先根據(jù)共付費(fèi)8元得一人付費(fèi)2元一人付費(fèi)6元或兩人都付費(fèi)4元,再求甲比乙先下地鐵的方案數(shù).【小問(wèn)1詳解】由已知可得:甲、乙兩人共付費(fèi)6元,則甲、乙一人付費(fèi)2元一人付費(fèi)4元,又付費(fèi)2元的乘坐站數(shù)有1,2,3三種選擇,付費(fèi)4元的乘坐站數(shù)有4,5,6,7四種選,所以甲、乙下地鐵的方案共有(3×4)×2=24(種).【小問(wèn)2詳解】甲、乙兩人共付費(fèi)8元,則甲、乙一人付費(fèi)2元一人付費(fèi)6元或兩人都付費(fèi)4元;當(dāng)甲付費(fèi)2元,乙付費(fèi)6元時(shí),甲乘坐站數(shù)有1,2,3三種選擇,乙乘坐站數(shù)有8,9,10,11,12五種選擇,此時(shí),共有35=15(種)方案;當(dāng)兩人都付費(fèi)4元時(shí),若甲在第4站下地鐵,則乙可在第5,6,7站下地鐵,有3種方案;若甲在第5站下地鐵,則乙可在第6,7站下地鐵,有2種方案;若甲在第6站下地鐵,則乙可在第7站下地鐵,有1種方案;綜上,甲比乙先下地鐵的方案共有(種).18、(1)平均數(shù)和中位數(shù)都為260件;(2)在的件數(shù)為,在的件數(shù)為.【解析】(1)由每組頻率乘以組中值相加即可得平均數(shù),設(shè)中位數(shù)為,由落在區(qū)間內(nèi)的頻率為0.5可得結(jié)果;(2)先得頻率分別為0.1,0.5,由分層抽樣的概念即可得結(jié)果.【詳解】(1)每天包裹數(shù)量的平均數(shù)為;設(shè)中位數(shù)為,易知,則,解得.所以公司每天包裹的平均數(shù)和中位數(shù)都為260件.(2)件數(shù)在,的頻率分別為0.1,0.5頻率之比為1:5,所抽取的30件中,在的件數(shù)為,在的件數(shù)為.19、(1),;(2)答案見(jiàn)解析.【解析】(1)已知切線求方程參數(shù),第一步求導(dǎo),切點(diǎn)在曲線,切點(diǎn)在切線,切點(diǎn)處的導(dǎo)數(shù)值為切線斜率.(2)第一步定義域,第二步求導(dǎo),第三步令導(dǎo)數(shù)大于或小于0,求解析,即可得到答案.【小問(wèn)1詳解】的定義域?yàn)椋?,因?yàn)樵邳c(diǎn)處的切線為,所以,所以;所以把點(diǎn)代入得:.即a,b的值為:,.【小問(wèn)2詳解】由(1)知:.①當(dāng)時(shí),在上恒成立,所以在單調(diào)遞減;②當(dāng)時(shí),令,解得:,列表得:x-0+單調(diào)遞減極小值單調(diào)遞增所以,時(shí),的遞減區(qū)間為,單增區(qū)間為.綜上所述:當(dāng)時(shí),在單調(diào)遞減;當(dāng)時(shí),的遞減區(qū)間為,單增區(qū)間為.【點(diǎn)睛】導(dǎo)函數(shù)中得切線問(wèn)題第一步求導(dǎo),第二步列切點(diǎn)在曲線,切點(diǎn)在切線,切點(diǎn)處的導(dǎo)數(shù)值為切線斜率這三個(gè)方程,可解切線相關(guān)問(wèn)題.20、(1)(2)【解析】(1)直接運(yùn)用圓錐的表面積公式計(jì)算即可;(2)建立空間直角坐標(biāo),然后運(yùn)用向量法計(jì)算可求得答案.【小問(wèn)1詳解】【小問(wèn)2詳解】如圖,建立直角坐標(biāo)系,,,,∴B在CD上投影的長(zhǎng)度∴B到CD的距離解法2:設(shè)直線CD上一點(diǎn)E滿足令,則∴,∴,∴∴,故B到CD距離為.21、(1)證明見(jiàn)解析;(2).【解析】(1)連接交于點(diǎn),連接,則,利用線面平行的判定定理,即可得證;(2)根據(jù)題意,求得菱形的邊長(zhǎng),取中點(diǎn),可證,如圖建系,求得點(diǎn)坐標(biāo)及坐標(biāo),即可求得平面的法向量,根據(jù)平面PAD,可求得面的法向量,利用空間向量的夾角公式,即可求得答案.【詳解】(1)連接交于點(diǎn),連接,則、E分別為、的中點(diǎn),所以,又平面平面所以平面(2)由菱形的面積為,,易得菱形邊長(zhǎng)為,取中點(diǎn),連接,因?yàn)?,所以,以點(diǎn)為原點(diǎn),以方向?yàn)檩S,方向?yàn)檩S,方向?yàn)檩S,建立如圖所示坐標(biāo)系.則所以設(shè)平面的法向量,由得,令,則所以一個(gè)法向量,因?yàn)椋?,所以平面PAD,所以平面的一個(gè)法向量所以,又二面角為銳二面角,所以二面角的余弦值為【點(diǎn)睛】解題的關(guān)鍵是熟練掌握證明平行的定理,證明線面平行時(shí),常用中位線法和平行四邊形法來(lái)證明;利用空間向量求解二面角為??碱}型,步驟為建系、求點(diǎn)坐標(biāo)、求所需向量坐標(biāo)、求法向量、利用夾角

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論