黑龍江省哈爾濱市阿城區(qū)龍滌中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題含解析_第1頁(yè)
黑龍江省哈爾濱市阿城區(qū)龍滌中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題含解析_第2頁(yè)
黑龍江省哈爾濱市阿城區(qū)龍滌中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題含解析_第3頁(yè)
黑龍江省哈爾濱市阿城區(qū)龍滌中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題含解析_第4頁(yè)
黑龍江省哈爾濱市阿城區(qū)龍滌中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

黑龍江省哈爾濱市阿城區(qū)龍滌中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知平面,的法向量分別為,,且,則()A. B.C. D.2.已知函數(shù),則的單調(diào)遞增區(qū)間為().A. B.C. D.3.算盤是中國(guó)古代的一項(xiàng)重要發(fā)明.現(xiàn)有一種算盤(如圖1),共兩檔,自右向左分別表示個(gè)位和十位,檔中橫以梁,梁上一珠撥下,記作數(shù)字5,梁下五珠,上撥一珠記作數(shù)字1(如圖2中算盤表示整數(shù)51).如果撥動(dòng)圖1算盤中的兩枚算珠,可以表示不同整數(shù)的個(gè)數(shù)為()A.8 B.10C.15 D.164.已知點(diǎn),點(diǎn)關(guān)于原點(diǎn)對(duì)稱點(diǎn)為,則()A. B.C. D.5.埃及胡夫金字塔是古代世界建筑奇跡之一,它的形狀可視為一個(gè)正四棱錐,以該四棱錐的高為邊長(zhǎng)的正方形面積等于該四棱錐一個(gè)側(cè)面三角形的面積,則其側(cè)面三角形底邊上的高與底面正方形的邊長(zhǎng)的比值為()A. B.C. D.6.已知命題:,;命題:,.則下列命題中為真命題的是()A. B.C. D.7.已知是橢圓兩個(gè)焦點(diǎn),P在橢圓上,,且當(dāng)時(shí),的面積最大,則橢圓的標(biāo)準(zhǔn)方程為()A. B.C. D.8.瑞士數(shù)學(xué)家歐拉(LeonhardEuler)1765年在其所著的《三角形的幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上.后人稱這條直線為歐拉線.已知△ABC的頂點(diǎn),其歐拉線方程為,則頂點(diǎn)C的坐標(biāo)是()A.() B.()C.() D.()9.若方程表示雙曲線,則()A. B.C. D.10.若構(gòu)成空間向量的一組基底,則下列向量不共面的是()A.,, B.,,C.,, D.,,11.在棱長(zhǎng)為1的正方體中,是線段上一個(gè)動(dòng)點(diǎn),則下列結(jié)論正確的有()A.不存在點(diǎn)使得異面直線與所成角為90°B.存在點(diǎn)使得異面直線與所成角為45°C.存在點(diǎn)使得二面角的平面角為45°D.當(dāng)時(shí),平面截正方體所得的截面面積為12.如圖,棱長(zhǎng)為1的正方體中,為線段上的動(dòng)點(diǎn),則下列結(jié)論錯(cuò)誤的是A.B.平面平面C.的最大值為D.的最小值為二、填空題:本題共4小題,每小題5分,共20分。13.方程表示雙曲線,則實(shí)數(shù)k的取值范圍是___________.14.設(shè)、為正數(shù),若,則的最小值是______,此時(shí)______.15.橢圓的離心率是______16.已知雙曲線兩焦點(diǎn)之間的距離為4,則雙曲線的漸近線方程是___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知為直角梯形,,平面,,.(1)求證:平面;(2)求平面與平面所成銳二面角的余弦值.18.(12分)如圖,三棱錐中,為等邊三角形,且面面,(1)求證:;(2)當(dāng)與平面BCD所成角為45°時(shí),求二面角的余弦值19.(12分)在①,②,③,三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問(wèn)題中,并解答.設(shè)數(shù)列是公比大于0的等比數(shù)列,其前項(xiàng)和為,數(shù)列是等差數(shù)列,其前項(xiàng)和為.已知,,,_____________.(1)請(qǐng)寫出你選擇條件的序號(hào)____________;并求數(shù)列和的通項(xiàng)公式;(2)求和.20.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)在區(qū)間上的值域21.(12分)在中,,,為邊上一點(diǎn),且(1)求;(2)若,求22.(10分)已知函數(shù),.(1)當(dāng)時(shí),求不等式的解集;(2)若在上恒成立,求取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由題得,解方程即得解.【詳解】解:因?yàn)椋运?,所以,所?故選:D2、D【解析】利用導(dǎo)數(shù)分析函數(shù)單調(diào)性【詳解】的定義域?yàn)椋?,令,解得故的單調(diào)遞增區(qū)間為故選:D3、A【解析】根據(jù)給定條件分類探求出撥動(dòng)兩枚算珠的結(jié)果計(jì)算得解.【詳解】撥動(dòng)圖1算盤中的兩枚算珠,有兩類辦法,由于撥動(dòng)一枚算珠有梁上、梁下之分,則只在一個(gè)檔撥動(dòng)兩枚算珠共有4種方法,在每一個(gè)檔各撥動(dòng)一枚算珠共有4種方法,由分類加法計(jì)數(shù)原理得共有8種方法,所以表示不同整數(shù)的個(gè)數(shù)為8.故選:A4、C【解析】根據(jù)空間兩點(diǎn)間距離公式,結(jié)合對(duì)稱性進(jìn)行求解即可.【詳解】因?yàn)辄c(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,所以,因此,故選:C5、C【解析】設(shè),利用得到關(guān)于的方程,解方程即可得到答案.【詳解】如圖,設(shè),則,由題意,即,化簡(jiǎn)得,解得(負(fù)值舍去).故選:C【點(diǎn)晴】本題主要考查正四棱錐的概念及其有關(guān)計(jì)算,考查學(xué)生的數(shù)學(xué)計(jì)算能力,是一道容易題.6、C【解析】利用基本不等式判斷命題的真假,由不等式性質(zhì)判斷命題的真假,進(jìn)而確定它們所構(gòu)成的復(fù)合命題的真假即可.【詳解】由,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故不存在使,所以命題為假命題,而命題為真命題,則為真,為假,故為假,為假,為真,為假.故選:C7、A【解析】由題意知c=3,當(dāng)△F1PF2的面積最大時(shí),點(diǎn)P與橢圓在y軸上的頂點(diǎn)重合,即可解出【詳解】由題意知c=3,當(dāng)△F1PF2的面積最大時(shí),點(diǎn)P與橢圓在y軸上的頂點(diǎn)重合,∵時(shí),△F1PF2的面積最大,∴a==,b=∴橢圓的標(biāo)準(zhǔn)方程為故選:A8、A【解析】根據(jù)題意,求得的外心,再根據(jù)外心的性質(zhì),以及重心的坐標(biāo),聯(lián)立方程組,即可求得結(jié)果.【詳解】因?yàn)?,故的斜率,又的中點(diǎn)坐標(biāo)為,故的垂直平分線的方程為,即,故△的外心坐標(biāo)即為與的交點(diǎn),即,不妨設(shè)點(diǎn),則,即;又△的重心的坐標(biāo)為,其滿足,即,也即,將其代入,可得,,解得或,對(duì)應(yīng)或,即或,因?yàn)榕c點(diǎn)重合,故舍去.故點(diǎn)的坐標(biāo)為.故選:A.9、C【解析】根據(jù)曲線方程表示雙曲線方程有,即可求參數(shù)范圍.【詳解】由題設(shè),,可得.故選:C.10、C【解析】根據(jù)空間向量共面的條件即可解答.【詳解】對(duì)于A,由,所以,,共面;對(duì)于B,由,所以,,共面;對(duì)于D,,所以,,共面,故選:C.11、D【解析】由正方體的性質(zhì)可將異面直線與所成的角可轉(zhuǎn)化為直線與所成角,而當(dāng)為的中點(diǎn)時(shí),可得,可判斷A;與或重合時(shí),直線與所成的角最小可判斷B;當(dāng)與重合時(shí),二面角的平面角最小,通過(guò)計(jì)算可判斷C;過(guò)作,交于,交于點(diǎn),由題意可得四邊形即為平面截正方體所得的截面,且四邊形是等腰梯形,然后利用已知數(shù)據(jù)計(jì)算即可判斷D.【詳解】異面直線與所成的角可轉(zhuǎn)化為直線與所成角,當(dāng)為中點(diǎn)時(shí),,此時(shí)與所成的角為90°,所以A錯(cuò)誤;當(dāng)與或重合時(shí),直線與所成角最小,為60°,所以B錯(cuò)誤;當(dāng)與重合時(shí),二面角的平面角最小,,所以,所以C錯(cuò)誤;對(duì)于D,過(guò)作,交于,交于點(diǎn),因?yàn)?,所以、分別是、的中點(diǎn),又,所以,四邊形即為平面截正方體所得的截面,因?yàn)?,且,所以四邊形是等腰梯形,作交于點(diǎn),所以,,所以梯形的面積為,所以D正確.故選:D.12、C【解析】∵,,∴面,面,∴,A正確;∵平面即為平面,平面即為平面,且平面,∴平面平面,∴平面平面,∴B正確;當(dāng)時(shí),為鈍角,∴C錯(cuò);將面與面沿展成平面圖形,線段即為的最小值,在中,,利用余弦定理解三角形得,即,∴D正確,故選C考點(diǎn):立體幾何中的動(dòng)態(tài)問(wèn)題【思路點(diǎn)睛】立體幾何問(wèn)題的求解策略是通過(guò)降維,轉(zhuǎn)化為平面幾何問(wèn)題,具體方法表現(xiàn)為:

求空間角、距離,歸到三角形中求解;2.對(duì)于球的內(nèi)接外切問(wèn)題,作適當(dāng)?shù)慕孛妫纫芊从吵鑫恢藐P(guān)系,又要反映出數(shù)量關(guān)系;求曲面上兩點(diǎn)之間的最短距離,通過(guò)化曲為直轉(zhuǎn)化為同一平面上兩點(diǎn)間的距離二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題可得,即求.【詳解】∵方程表示雙曲線,∴,∴.故答案為:.14、①.4②.【解析】巧用“1”改變目標(biāo)式子的結(jié)果,借助均值不等式求最值即可.【詳解】,當(dāng)且僅當(dāng)即,時(shí)等號(hào)成立.故答案為,【點(diǎn)睛】本題考查最值的求法,注意運(yùn)用“1”的代換法和基本不等式,考查運(yùn)算能力,屬于中檔題15、【解析】求出、、的值,即可得出橢圓的離心率.【詳解】在橢圓中,,,,因此,橢圓的離心率是.故答案為:.16、.【解析】根據(jù)條件求出c,進(jìn)而根據(jù)求出a,最后寫出漸近線方程.【詳解】因?yàn)殡p曲線兩焦點(diǎn)之間的距離為4,所以,解得,所以,,雙曲線的漸近線方程是.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見解析;(2).【解析】建立空間直角坐標(biāo)系.(1)方法一,利用向量的方法,通過(guò)計(jì)算,,證得,,由此證得平面.方法二,利用幾何法,通過(guò)平面證得,結(jié)合證得,由此證得平面.(2)通過(guò)平面和平面的法向量,計(jì)算出平面與平面所成銳二面角的余弦值.【詳解】如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,可得,,,.(1)證明法一:因?yàn)?,,,所以,,所以,,,平面,平面,所以平?證明法二:因?yàn)槠矫妫矫?,所以,又因?yàn)椋?,,平面,平面,所以平?(2)由(1)知平面的一個(gè)法向量,設(shè)平面的法向量,又,,且所以所以平面的一個(gè)法向量為,所以,所以平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1)證明見解析;(2).【解析】(1)根據(jù)給定條件證得平面即可推理作答.(2)由與平面BCD所成角確定正邊長(zhǎng)與CD長(zhǎng)的關(guān)系,再作出二面角的平面角,借助余弦定理計(jì)算作答.【小問(wèn)1詳解】在三棱錐中,平面平面,平面平面,而,平面,因此有平面,又有平面,所以.【小問(wèn)2詳解】取BC中點(diǎn)F,連接AF,DF,如圖,因?yàn)榈冗吶切?,則,而平面平面,平面平面,平面,于是得平面,是與平面BCD所成角,即,令,則,因,即有,由(1)知,,則有,過(guò)C作交AD于O,在平面內(nèi)過(guò)O作交BD于E,連CE,從而得是二面角的平面角,中,,,中,由余弦定理得,,,顯然E是斜邊中點(diǎn),則,中,由余弦定理得,所以二面角的余弦值.19、(1)選①,,;選②,,;選③,,;(2),【解析】(1)選條件①根據(jù)等比數(shù)列列出方程求出公比得通項(xiàng)公式,再由等差數(shù)列列出方程求出首項(xiàng)與公差可得通項(xiàng)公式,選②③與①相同的方法求數(shù)列的通項(xiàng)公式;(2)根據(jù)等比數(shù)列、等差數(shù)列的求和公式解計(jì)算即可.【小問(wèn)1詳解】選條件①:設(shè)等比數(shù)列的公比為q,,,解得或,,,.設(shè)等差數(shù)列的公差為d,,,解得,,.選條件②:設(shè)等比數(shù)列的公比為q,,,解得或,,,.設(shè)等差數(shù)列的公差為,,,解得,,選條件③:設(shè)等比數(shù)列的公比為,,,解得或,,,.設(shè)等差數(shù)列的公差為,,,解得,【小問(wèn)2詳解】由(1)知,,20、(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)【解析】(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(2)根據(jù)函數(shù)的單調(diào)性求出函數(shù)的極值點(diǎn),從而求出函數(shù)的最值即可【詳解】解:(1)由題意得,,令,得,令,得或,故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)易知,因?yàn)?所以(或由,可得),又當(dāng)時(shí),,所以函數(shù)在區(qū)間上的值域?yàn)椤军c(diǎn)睛】確定函數(shù)單調(diào)區(qū)間的步驟:第一步,確定函數(shù)的定義域;第二步,求;第三步,解不等式,解集在定義域內(nèi)的部分為單調(diào)遞增區(qū)間;解不等式,解集

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論