2026屆銅陵市重點中學數(shù)學高三第一學期期末達標測試試題含解析_第1頁
2026屆銅陵市重點中學數(shù)學高三第一學期期末達標測試試題含解析_第2頁
2026屆銅陵市重點中學數(shù)學高三第一學期期末達標測試試題含解析_第3頁
2026屆銅陵市重點中學數(shù)學高三第一學期期末達標測試試題含解析_第4頁
2026屆銅陵市重點中學數(shù)學高三第一學期期末達標測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2026屆銅陵市重點中學數(shù)學高三第一學期期末達標測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列中,,,則數(shù)列的前10項和()A.100 B.210 C.380 D.4002.,則與位置關系是()A.平行 B.異面C.相交 D.平行或異面或相交3.框圖與程序是解決數(shù)學問題的重要手段,實際生活中的一些問題在抽象為數(shù)學模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計算一組數(shù)據(jù)的方差,設計了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應填入()A., B. C., D.,4.在中,為邊上的中點,且,則()A. B. C. D.5.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()6.設,若函數(shù)在區(qū)間上有三個零點,則實數(shù)的取值范圍是()A. B. C. D.7.如下的程序框圖的算法思路源于我國古代數(shù)學名著《九章算術》中的“更相減損術”.執(zhí)行該程序框圖,若輸入的a,b分別為176,320,則輸出的a為()A.16 B.18 C.20 D.158.已知雙曲線:的焦點為,,且上點滿足,,,則雙曲線的離心率為A. B. C. D.59.在精準扶貧工作中,有6名男干部、5名女干部,從中選出2名男干部、1名女干部組成一個扶貧小組分到某村工作,則不同的選法共有()A.60種 B.70種 C.75種 D.150種10.若復數(shù)滿足,則()A. B. C. D.11.已知集合,,則為()A. B. C. D.12.如圖所示的程序框圖,若輸入,,則輸出的結果是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,圓.已知過原點且相互垂直的兩條直線和,其中與圓相交于,兩點,與圓相切于點.若,則直線的斜率為_____________.14.已知集合,,則__________.15.如圖,在平面四邊形中,點,是橢圓短軸的兩個端點,點在橢圓上,,記和的面積分別為,,則______.16.已知x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,則三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在區(qū)間上的最小值為,求m的值.18.(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),),點.以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程,并指出其形狀;(2)曲線與曲線交于,兩點,若,求的值.19.(12分)已知數(shù)列的前項和和通項滿足.(1)求數(shù)列的通項公式;(2)已知數(shù)列中,,,求數(shù)列的前項和.20.(12分)記為數(shù)列的前項和,已知,等比數(shù)列滿足,.(1)求的通項公式;(2)求的前項和.21.(12分)已知橢圓的左、右頂點分別為、,上、下頂點分別為,,為其右焦點,,且該橢圓的離心率為;(Ⅰ)求橢圓的標準方程;(Ⅱ)過點作斜率為的直線交橢圓于軸上方的點,交直線于點,直線與橢圓的另一個交點為,直線與直線交于點.若,求取值范圍.22.(10分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)把的參數(shù)方程化為極坐標方程:(2)求與交點的極坐標.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

設公差為,由已知可得,進而求出的通項公式,即可求解.【詳解】設公差為,,,,.故選:B.【點睛】本題考查等差數(shù)列的基本量計算以及前項和,屬于基礎題.2、D【解析】結合圖(1),(2),(3)所示的情況,可得a與b的關系分別是平行、異面或相交.選D.3、A【解析】

依題意問題是,然后按直到型驗證即可.【詳解】根據(jù)題意為了計算7個數(shù)的方差,即輸出的,觀察程序框圖可知,應填入,,故選:A.【點睛】本題考查算法與程序框圖,考查推理論證能力以及轉化與化歸思想,屬于基礎題.4、A【解析】

由為邊上的中點,表示出,然后用向量模的計算公式求模.【詳解】解:為邊上的中點,,故選:A【點睛】在三角形中,考查中點向量公式和向量模的求法,是基礎題.5、D【解析】

由題意利用兩個向量坐標形式的運算法則,兩個向量平行、垂直的性質(zhì),得出結論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標對應不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標對應不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【點睛】本題主要考查兩個向量坐標形式的運算,兩個向量平行、垂直的性質(zhì),屬于基礎題.6、D【解析】令,可得.在坐標系內(nèi)畫出函數(shù)的圖象(如圖所示).當時,.由得.設過原點的直線與函數(shù)的圖象切于點,則有,解得.所以當直線與函數(shù)的圖象切時.又當直線經(jīng)過點時,有,解得.結合圖象可得當直線與函數(shù)的圖象有3個交點時,實數(shù)的取值范圍是.即函數(shù)在區(qū)間上有三個零點時,實數(shù)的取值范圍是.選D.點睛:已知函數(shù)零點的個數(shù)(方程根的個數(shù))求參數(shù)值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉化成求函數(shù)的值域問題加以解決;(3)數(shù)形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結合求解,對于一些比較復雜的函數(shù)的零點問題常用此方法求解.7、A【解析】

根據(jù)題意可知最后計算的結果為的最大公約數(shù).【詳解】輸入的a,b分別為,,根據(jù)流程圖可知最后計算的結果為的最大公約數(shù),按流程圖計算,,,,,,,易得176和320的最大公約數(shù)為16,故選:A.【點睛】本題考查的是利用更相減損術求兩個數(shù)的最大公約數(shù),難度較易.8、D【解析】

根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.【點睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運算能力.9、C【解析】

根據(jù)題意,分別計算“從6名男干部中選出2名男干部”和“從5名女干部中選出1名女干部”的取法數(shù),由分步計數(shù)原理計算可得答案.【詳解】解:根據(jù)題意,從6名男干部中選出2名男干部,有種取法,從5名女干部中選出1名女干部,有種取法,則有種不同的選法;故選:C.【點睛】本題考查排列組合的應用,涉及分步計數(shù)原理問題,屬于基礎題.10、C【解析】

化簡得到,,再計算復數(shù)模得到答案.【詳解】,故,故,.故選:.【點睛】本題考查了復數(shù)的化簡,共軛復數(shù),復數(shù)模,意在考查學生的計算能力.11、C【解析】

分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C【點睛】本題考查對數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.12、B【解析】

列舉出循環(huán)的每一步,可得出輸出結果.【詳解】,,不成立,,;不成立,,;不成立,,;成立,輸出的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結果,一般要將算法的每一步列舉出來,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設:,:,利用點到直線的距離,列出式子,求出的值即可.【詳解】解:由圓,可知圓心,半徑為.設直線:,則:,圓心到直線的距離為,,.圓心到直線的距離為半徑,即,并根據(jù)垂徑定理的應用,可列式得到,解得.故答案為:.【點睛】本題主要考查點到直線的距離公式的運用,并結合圓的方程,垂徑定理的基本知識,屬于中檔題.14、【解析】

直接根據(jù)集合和集合求交集即可.【詳解】解:,,所以.故答案為:【點睛】本題考查集合的交集運算,是基礎題.15、【解析】

依題意易得A、B、C、D四點共圓且圓心在x軸上,然后設出圓心,由圓的方程與橢圓方程聯(lián)立得到B的橫坐標,進一步得到D橫坐標,再由計算比值即可.【詳解】因為,所以A、B、C、D四點共圓,直徑為,又A、C關于x軸對稱,所以圓心E在x軸上,設圓心E為,則圓的方程為,聯(lián)立橢圓方程消y得,解得,故B的橫坐標為,又B、D中點是E,所以D的橫坐標為,故.故答案為:.【點睛】本題考查橢圓中的四點共圓及三角形面積之比的問題,考查學生基本計算能力及轉化與化歸思想,本題關鍵是求出B、D橫坐標,是一道有區(qū)分度的壓軸填空題.16、3【解析】

先根據(jù)約束條件畫出可行域,再由y=2x-z表示直線在y軸上的截距最大即可得解.【詳解】x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,畫出可行域如圖所示.目標函數(shù)z=2x-y,即平移直線y=2x-z,截距最大時即為所求.2y+1=0x-y-1=0點A(12,z在點A處有最小值:z=2×1故答案為:32【點睛】本題主要考查線性規(guī)劃的基本應用,利用數(shù)形結合,結合目標函數(shù)的幾何意義是解決此類問題的基本方法.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)先求導,再對m分類討論,求出的單調(diào)性;(2)對m分三種情況討論求函數(shù)在區(qū)間上的最小值即得解.【詳解】(1)若,當時,;當時.,所以在上單調(diào)遞增,在上單調(diào)遞減若.在R上單調(diào)遞增若,當時,;當時.,所以在上單調(diào)遞增,在上單調(diào)遞減(2)由(1)可知,當時,在上單調(diào)遞增,則.則不合題意當時,在上單調(diào)遞減,在上單調(diào)遞增.則,即又因為單調(diào)遞增,且,故綜上,【點睛】本題主要考查利用導數(shù)研究函數(shù)的單調(diào)性和最值,意在考查學生對這些知識的理解掌握水平.18、(1),以為圓心,為半徑的圓;(2)【解析】

(1)根據(jù)極坐標與直角坐標的互化公式,直接得到的直角坐標方程并判斷形狀;(2)聯(lián)立直線參數(shù)方程與的直角坐標方程,根據(jù)直線參數(shù)方程中的幾何意義結合求解出的值.【詳解】解:(1)由,得,所以,即,.所以曲線是以為圓心,為半徑的圓.(2)將代入,整理得.設點,所對應的參數(shù)分別為,,則,.,解得,則.【點睛】本題考查極坐標與直角坐標的互化以及根據(jù)直線參數(shù)方程中的幾何意義求值,難度一般.(1)極坐標與直角坐標的互化公式:;(2)若要使用直線參數(shù)方程中的幾何意義,要注意將直線的標準參數(shù)方程代入到對應曲線的直角坐標方程中,構成關于的一元二次方程并結合韋達定理形式進行分析求解.19、(1);(2)【解析】

(1)當時,利用可得,故可利用等比數(shù)列的通項公式求出的通項.(2)利用分組求和法可求數(shù)列的前項和.【詳解】(1)當時,,所以,當時,,①,②所以,即,又因為,故,所以,所以是首項,公比為的等比數(shù)列,故.(2)由得:數(shù)列為等差數(shù)列,公差,,,.【點睛】本題考查數(shù)列的通項與求和,注意數(shù)列求和關鍵看通項的結構形式,如果通項是等差數(shù)列與等比數(shù)列的和,則用分組求和法;如果通項是等差數(shù)列與等比數(shù)列的乘積,則用錯位相減法;如果通項可以拆成一個數(shù)列連續(xù)兩項的差,那么用裂項相消法;如果通項的符號有規(guī)律的出現(xiàn),則用并項求和法.20、(1)(2)當時,;當時,.【解析】

(1)利用數(shù)列與的關系,求得;(2)由(1)可得:,,算出公比,利用等比數(shù)列的前項和公式求出.【詳解】(1)當時,,當時,,因為適合上式,所以.(2)由(1)得,,設等比數(shù)列的公比為,則,解得,當時,,當時,.【點睛】本題主要考查數(shù)列與的關系、等比數(shù)列的通項公式、前項和公式等基礎知識,考查運算求解能力..21、(Ⅰ);(Ⅱ),.【解析】

(Ⅰ)由題意可得,的坐標,結合橢圓離心率,及隱含條件列式求得,的值,則橢圓方程可求;(Ⅱ)設直線,求得的坐標,再設直線,求出點的坐標,寫出的方程,聯(lián)立與,可求出的坐標,由,可得關于的函數(shù)式,由單調(diào)性可得取值范圍.【詳解】(Ⅰ),,,,,由,得,又,,解得:,,.橢圓的標準方程為;(Ⅱ)設直線,則與直線的交點,又,設直線,聯(lián)立,消可得.解得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論