版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆山東省臨沂市蘭陵縣第四中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,若斜邊長為的等腰直角(與重合)是水平放置的的直觀圖,則的面積為()A.2 B.C. D.82.已知拋物線上一點M與焦點間的距離是3,則點M的縱坐標(biāo)為()A.1 B.2C.3 D.43.若等比數(shù)列中,,,那么()A.20 B.18C.16 D.144.在中,三個內(nèi)角A,B,C的對邊分別為a,b,c,若,,,則的面積為()A. B.1C. D.25.已知橢圓:與雙曲線:有相同的焦點、,橢圓的離心率為,雙曲線的離心率為,點P為橢圓與雙曲線的交點,且,則的最大值為()A. B.C. D.6.在四棱錐中,底面ABCD是正方形,E為PD中點,若,,,則()A. B.C. D.7.f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時,f(x)g(x)+f(x)g(x)<0且f(﹣1)=0則不等式f(x)g(x)<0的解集為A.(﹣1,0)∪(1,+∞) B.(﹣1,0)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)∪(0,1)8.已知△的頂點B,C在橢圓上,頂點A是橢圓的一個焦點,且橢圓的另一個焦點在BC邊上,則△的周長是()A. B.C.8 D.169.執(zhí)行如圖所示的程序框圖,若輸入,則輸出的m的值是()A.-1 B.0C.0.1 D.110.現(xiàn)從名男醫(yī)生和名女醫(yī)生中抽取兩人加入“援鄂醫(yī)療隊”,用表示事件“抽到的兩名醫(yī)生性別相同”,表示事件“抽到的兩名醫(yī)生都是女醫(yī)生”,則()A. B.C. D.11.在中,,滿足條件的三角形的個數(shù)為()A.0 B.1C.2 D.無數(shù)多12.已知圓:,點,則點到圓上點的最小距離為()A.1 B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.沈陽市某高中有高一學(xué)生600人,高二學(xué)生500人,高三學(xué)生550人,現(xiàn)對學(xué)生關(guān)于消防安全知識了解情況進行分層抽樣調(diào)查,若抽取了一個容量為n的樣本,其中高三學(xué)生有11人,則n的值等于________.14.曲線在處的切線斜率為___________.15.圓錐的母線長為2,母線所在直線與圓錐的軸所成角為,則該圓錐的側(cè)面積大小為____________.(結(jié)果保留)16.已知數(shù)列{}的通項公式為,前n項和為,當(dāng)取得最小值時,n的值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在正方體中,分別是,的中點.求證:(1)平面;(2)平面平面.18.(12分)已知直線經(jīng)過點且斜率為(1)求直線的一般式方程(2)求與直線平行,且過點的直線的一般式方程(3)求與直線垂直,且過點的直線的一般式方程19.(12分)已知函數(shù).(1)當(dāng)時,求函數(shù)的極值;(2)若對,恒成立,求的取值范圍.20.(12分)已知,是函數(shù)的兩個極值點.(1)求的解析式;(2)記,,若函數(shù)有三個零點,求的取值范圍.21.(12分)求滿足下列條件的圓錐曲線方程的標(biāo)準(zhǔn)方程.(1)經(jīng)過點,兩點的橢圓;(2)與雙曲線-=1有相同的漸近線且經(jīng)過點的雙曲線.22.(10分)中國共產(chǎn)黨建黨100周年華誕之際,某高校積極響應(yīng)黨和國家的號召,通過“增強防疫意識,激發(fā)愛國情懷”知識競賽活動,來回顧中國共產(chǎn)黨從成立到發(fā)展壯大的心路歷程,表達對建黨100周年以來的豐功偉績的傳頌.教務(wù)處為了解學(xué)生對相關(guān)知識的掌握情況,隨機抽取了100名學(xué)生的競賽成績,并以此為樣本繪制了如下樣本頻率分布直方圖(1)求值并估計中位數(shù)所在區(qū)間(2)需要從參賽選手中選出6人代表學(xué)校參與省里的此類比賽,你認(rèn)為怎么選最合理,并說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由斜二測還原圖形計算即可求得結(jié)果.【詳解】在斜二測直觀圖中,由為等腰直角三角形,,可得,.還原原圖形如圖:則,則.故選:C2、B【解析】利用拋物線的定義求解即可【詳解】拋物線的焦點為,準(zhǔn)線方程為,因為拋物線上一點M與焦點間的距離是3,所以,得,即點M的縱坐標(biāo)為2,故選:B3、B【解析】利用等比數(shù)列的基本量進行計算即可【詳解】設(shè)等比數(shù)列的公比為,則,所以故選:B4、C【解析】由余弦定理求出,利用正弦定理將邊化角,再根據(jù)二倍角公式得到,即可得到,最后利用面積公式計算可得;【詳解】解:因為,又,所以,因為,所以,所以,因為,所以,即,所以或,即或(舍去),所以,因為,所以,所以;故選:C5、B【解析】不妨設(shè)點為第一象限的交點,結(jié)合橢圓與雙曲線的定義得到,進而結(jié)合余弦定理得到,即,令然后結(jié)合三角函數(shù)即可求出結(jié)果.【詳解】不妨設(shè)點為第一象限的交點,則由橢圓的定義可得,由雙曲線的定義可得,所以,因此,即,所以,即,令因此,其中,所以當(dāng)時,有最大值,最大值為,故選:B.【點睛】一、橢圓的離心率是橢圓最重要的幾何性質(zhì),求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個條件得到關(guān)于a,b,c的齊次式,結(jié)合b2=a2-c2轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)二、雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據(jù)一個條件得到關(guān)于a,b,c的齊次式,結(jié)合b2=c2-a2轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)6、C【解析】根據(jù)向量線性運算法則計算即可.【詳解】故選:C7、A【解析】構(gòu)造函數(shù)h(x)=f(x)g(x),由已知得當(dāng)x<0時,h(x)<0,所以函數(shù)y=h(x)在(﹣∞,0)單調(diào)遞減,又因為f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),得函數(shù)y=h(x)為R上的奇函數(shù),所以函數(shù)y=h(x)在(0,+∞)單調(diào)遞減,得到f(x)g(x)<0不等式的解集【詳解】設(shè)h(x)=f(x)g(x),因為當(dāng)x<0時,f(x)g(x)+f(x)g(x)<0,所以當(dāng)x<0時,h(x)<0,所以函數(shù)y=h(x)在(﹣∞,0)單調(diào)遞減,又因為f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),所以函數(shù)y=h(x)為R上的奇函數(shù),所以函數(shù)y=h(x)在(0,+∞)單調(diào)遞減,因為f(﹣1)=0,所以函數(shù)y=h(x)的大致圖象如下:所以等式f(x)g(x)<0的解集為(﹣1,0)∪(1,+∞)故選A【點睛】本題考查導(dǎo)數(shù)乘法法則、導(dǎo)數(shù)的符號與函數(shù)單調(diào)性的關(guān)系;奇函數(shù)的單調(diào)性在對稱區(qū)間上一致,屬于中檔題8、D【解析】根據(jù)橢圓定義求解【詳解】由橢圓定義得△的周長是,故選:D.9、B【解析】計算后,根據(jù)判斷框直接判斷即可得解.【詳解】輸入,計算,判斷為否,計算,輸出.故選:B.10、A【解析】先求出抽到的兩名醫(yī)生性別相同的事件的概率,再求抽到的兩名醫(yī)生都是女醫(yī)生事件的概率,然后代入條件概率公式即可【詳解】解:由已知得,,則,故選:A【點睛】此題考查條件概率問題,屬于基礎(chǔ)題11、B【解析】利用正弦定理得到,進而或,由,得,即可求解【詳解】由正弦定理得,,或,,,故滿足條件的有且只有一個.故選:B12、C【解析】寫出圓的圓心和半徑,求出距離的最小值,再結(jié)合圓外一點到圓上點的距離最小值的方法即可求解.【詳解】由圓:,得圓,半徑為,所以,所以點到圓上點的最小距離為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、33【解析】根據(jù)分層抽樣的性質(zhì)進行求解即可.【詳解】因為抽取了一個容量為n的樣本,其中高三學(xué)生有11人,所以有,故答案為:3314、##【解析】首先求得的導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義可得切線的斜率.【詳解】因為函數(shù)的導(dǎo)數(shù)為,所以可得在處的切線斜率,故答案為:15、【解析】由題設(shè)知:圓錐的軸截面為等邊三角形,進而求圓錐的底面周長,由扇形面積公式求圓錐的側(cè)面積大小.【詳解】由題設(shè),圓錐的軸截面為等邊三角形,又圓錐的母線長為2,∴底面半徑為1,則底面周長為,∴圓錐的側(cè)面積大小為.故答案為:.16、7【解析】首先求出數(shù)列的正負(fù)項,再判斷取得最小值時n的值.【詳解】當(dāng),,解得:,當(dāng)和時,,所以取得最小值時,.故答案為:7三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、證明見解析【解析】(1)連接,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;(2)連接,,先由線面平行的判定定理,得到平面,再由(1)的結(jié)果,結(jié)合面面平行的判定定理,即可證明結(jié)論成立.【詳解】(1)如圖,連接.∵四邊形是正方形,是的中點,∴是的中點.又∵是的中點,∴.∵平面,平面,∴平面.(2)連接,,∵四邊形是正方形,是的中點,∴是的中點.又∵是中點,∴.∵平面平面,∴平面.由(1)知平面,且,∴平面平面.【點睛】本題主要考查證明線面平行與面面平行,熟記線面平行的判定定理以及面面平行的判定定理即可,屬于??碱}型.18、(1)(2)(3)【解析】(1)先寫點斜式方程,再化一般式,(2)根據(jù)平行設(shè)一般式,再代點坐標(biāo)得結(jié)果,(3)根據(jù)垂直設(shè)一般式,再代點坐標(biāo)得結(jié)果.【詳解】(1)(2)設(shè)所求方程為因為過點,所以(3)設(shè)所求方程為因為過點,所以【點睛】本題考查直線方程,考查基本分析求解能力,屬基礎(chǔ)題.19、(1)極小值為,無極大值;(2).【解析】(1)對函數(shù)進行求導(dǎo)、列表、判斷函數(shù)的單調(diào)性,最后根據(jù)函數(shù)極值的定義進行求解即可;(2)對進行常變量分離,然后構(gòu)造新函數(shù),對新函數(shù)進行求導(dǎo),判斷其單調(diào)性,進而求出新函數(shù)的最值,最后根據(jù)題意求出的取值范圍即可.【詳解】(1)函數(shù)的定義域為,當(dāng)時,.由,得.當(dāng)變化時,,的變化情況如下表-0+單調(diào)遞減極小值單調(diào)遞增所以在上單調(diào)遞減,上單調(diào)遞增,所以函數(shù)的極小值為,無極大值.(2)對,恒成立,即對,恒成立.令,則.由得,當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減,所以,因此.所以的取值范圍是.【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值,考查了構(gòu)造函數(shù)法、常變量分離法,考查了數(shù)學(xué)運算能力和分類討論思想.20、(1);(2)【解析】(1)根據(jù)極值點的定義,可知方程的兩個解即為,,代入即得結(jié)果;(2)根據(jù)題意,將方程轉(zhuǎn)化為,則函數(shù)與直線在區(qū)間,上有三個交點,進而求解的取值范圍【詳解】解:(1)因為,所以根據(jù)極值點定義,方程的兩個根即為,,,代入,,可得,解之可得,,故有;(2)根據(jù)題意,,,,根據(jù)題意,可得方程在區(qū)間,內(nèi)有三個實數(shù)根,即函數(shù)與直線在區(qū)間,內(nèi)有三個交點,又因為,則令,解得;令,解得或,所以函數(shù)在,上單調(diào)遞減,在上單調(diào)遞增;又因為,,,,函數(shù)圖象如下所示:若使函數(shù)與直線有三個交點,則需使,即21、(1);(2)【解析】(1)由題意可得,,從而可求出橢圓的標(biāo)準(zhǔn)方程,(2)由題意設(shè)雙曲線的共漸近線方程為,再將的坐標(biāo)代入方程可求出的值,從而可求出雙曲線方程【小問1詳解】因為,所以P、Q分別是橢圓長軸和短軸上的端點,且橢圓的焦點在x軸上,所以,所以橢圓的標(biāo)準(zhǔn)方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中樞神經(jīng)的傳導(dǎo)通路專題知識專家講座
- 人教版八年級物理上冊期末復(fù)習(xí)專題3作圖題教學(xué)課件
- 陜西省石泉縣七年級生物上冊-2.2多細胞生物體的結(jié)構(gòu)層次講義1-(新版)
- 《內(nèi)科護理》課件-第4章 第05節(jié) 炎癥性腸病病人的護理
- 《精裝修計量與計價》課件-工程定額
- (新教材)2026年人教版三年級上冊數(shù)學(xué) 2.5 用混合運算解決問題(1) 課件
- 程序員工作匯報經(jīng)典
- 物業(yè)管理公司員工入職培訓(xùn)
- 腎內(nèi)科慢性腎臟病管理措施
- 膽囊切除科普宣教
- 教師三筆字培訓(xùn)課件
- 少年宮乒乓球活動記錄文本
- 各品牌挖掘機挖斗連接尺寸數(shù)據(jù)
- 2021-2022學(xué)年云南省曲靖市部編版六年級上冊期末考試語文試卷(原卷版)
- 參會人員名單(模板)
- 飛機大戰(zhàn)游戲設(shè)計與實現(xiàn)
- 數(shù)學(xué)課如何提高課堂教學(xué)容量
- 監(jiān)理規(guī)劃畢業(yè)設(shè)計(論文)
- 京港澳高速公路段改擴建工程施工保通方案(總方案)
- 醫(yī)用設(shè)備EMC培訓(xùn)資料課件
- RoHS培訓(xùn)資料課件
評論
0/150
提交評論