西藏自治區(qū)昌都市第三高級中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第1頁
西藏自治區(qū)昌都市第三高級中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第2頁
西藏自治區(qū)昌都市第三高級中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第3頁
西藏自治區(qū)昌都市第三高級中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第4頁
西藏自治區(qū)昌都市第三高級中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

西藏自治區(qū)昌都市第三高級中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)、是兩條不同的直線,、、是三個不同的平面,則下列命題正確的是()A.若,則 B.若,則C.若,則 D.若,則2.已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的雙曲線的離心率為,則其漸近線方程為()A. B.C. D.3.我們通常稱離心率是的橢圓為“黃金橢圓”.如圖,已知橢圓,,,,分別為左、右、上、下頂點(diǎn),,分別為左、右焦點(diǎn),為橢圓上一點(diǎn),下列條件中能使橢圓為“黃金橢圓”的是()A. B.C.軸,且 D.四邊形的一個內(nèi)角為4.設(shè)x∈R,則x<3是0<x<3的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件5.已知實數(shù)a,b滿足,則下列不等式中恒成立的是()A. B.C. D.6.是直線與直線互相平行的()條件A.必要而不充分 B.充分而不必要C.充要 D.既不充分也不必要7.拋物線上點(diǎn)的橫坐標(biāo)為4,則到拋物線焦點(diǎn)的距離等于()A.12 B.10C.8 D.68.已知橢圓和雙曲線有共同焦點(diǎn),是它們一個交點(diǎn),且,記橢圓和雙曲線的離心率分別為,則的最大值為A.3 B.2C. D.9.已知是拋物線上的一個動點(diǎn),是圓上的一個動點(diǎn),是一個定點(diǎn),則的最小值為A. B.C. D.10.已知,是橢圓C的兩個焦點(diǎn),P是C上的一點(diǎn),若以為直徑的圓過點(diǎn)P,且,則C的離心率為()A. B.C. D.11.已知雙曲線,過點(diǎn)作直線l與雙曲線交于A,B兩點(diǎn),則能使點(diǎn)P為線段AB中點(diǎn)的直線l的條數(shù)為()A.0 B.1C.2 D.312.設(shè)P是拋物線上的一個動點(diǎn),F(xiàn)為拋物線的焦點(diǎn).若,則的最小值為()A. B.C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.如圖直線過點(diǎn),且與直線和分別相交于,兩點(diǎn).(1)求過與交點(diǎn),且與直線垂直的直線方程;(2)若線段恰被點(diǎn)平分,求直線的方程.14.從編號為01,02,…,60的60個產(chǎn)品中用系統(tǒng)抽樣的方法抽取一個樣本,已知樣本中的前兩個編號分別為02,08(編號按從小到大的順序排列),則樣本中最大的編號是_________15.若,滿足不等式組,則的最大值為________.16.已知等差數(shù)列滿足,,,則公差______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)點(diǎn)P是曲線上的任意一點(diǎn),k是該曲線在點(diǎn)P處的切線的斜率(1)求k的取值范圍;(2)求當(dāng)k取最大值時,該曲線在點(diǎn)P處的切線方程18.(12分)已知拋物線的焦點(diǎn)為,經(jīng)過點(diǎn)的直線與拋物線交于兩點(diǎn),其中點(diǎn)A在第一象限;(1)若直線的斜率為,求的值;(2)求線段的長度的最小值19.(12分)撫州市為了了解學(xué)生的體能情況,從全市所有高一學(xué)生中按80:1的比例隨機(jī)抽取200人進(jìn)行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,分為組畫出頻率分布直方圖如圖所示,現(xiàn)一,二兩組數(shù)據(jù)丟失,但知道第二組的頻率是第一組的3倍(1)若次數(shù)在以上含次為優(yōu)秀,試估計全市高一學(xué)生的優(yōu)秀率是多少?全市優(yōu)秀學(xué)生的人數(shù)約為多少?(2)求第一組、第二小組的頻率是多少?并補(bǔ)齊頻率分布直方圖;(3)估計該全市高一學(xué)生跳繩次數(shù)的中位數(shù)和平均數(shù)?20.(12分)已知拋物線C的方程是.(1)求C的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;(2)直線l過拋物線C的焦點(diǎn)且傾斜角為,與拋物線C的交點(diǎn)為A,B,求的長度.21.(12分)已知拋物線:的焦點(diǎn)是圓與軸的一個交點(diǎn).(1)求拋物線的方程;(2)若過點(diǎn)的直線與拋物線交于不同的兩點(diǎn)A、B,О為坐標(biāo)原點(diǎn),證明:.22.(10分)如圖,在三棱錐中,,點(diǎn)P為線段MC上的點(diǎn)(1)若平面PAB,試確定點(diǎn)P的位置,并說明理由;(2)若,,,求三棱錐的體積

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)線線、線面、面面的位置關(guān)系,對選項進(jìn)行逐一判斷即可.【詳解】選項A.一條直線垂直于一平面內(nèi)的,兩條相交直線,則改直線與平面垂直則由,不能得出,故選項A不正確.選項B.,則正確,故選項B正確.選項C若,則與可能相交,可能異面,也可能平行,故選項C不正確.選項D.若,則與可能相交,可能平行,故選項D不正確.故選:B2、A【解析】根據(jù)離心率求出的值,再根據(jù)漸近線方程求解即可.【詳解】因雙曲線焦點(diǎn)在軸上,所以漸近線方程為:,又因為雙曲線離心率為,且,所以,解得,即漸近線方程為:.故選:A.3、B【解析】先求出橢圓的頂點(diǎn)和焦點(diǎn)坐標(biāo),對于A,根據(jù)橢圓的基本性質(zhì)求出離心率判斷A;對于B,根據(jù)勾股定理以及離心率公式判斷B;根據(jù)結(jié)合斜率公式以及離心率公式判斷C;由四邊形的一個內(nèi)角為,即即三角形是等邊三角形,得到,結(jié)合離心率公式判斷D.【詳解】∵橢圓∴對于A,若,則,∴,∴,不滿足條件,故A不符合條件;對于B,,∴∴,∴∴,解得或(舍去),故B符合條件;對于C,軸,且,∴∵∴,解得∵,∴∴,不滿足題意,故C不符合條件;對于D,四邊形的一個內(nèi)角為,即即三角形是等邊三角形,∴∴,解得∴,故D不符合條件故選:B【點(diǎn)睛】本題主要考查了求橢圓離心率,涉及了勾股定理,斜率公式等的應(yīng)用,充分利用建立的等式是解題關(guān)鍵.4、B【解析】利用充分條件、必要條件的定義可得出結(jié)論.【詳解】,因此,“”是“”必要不充分條件.故選:B.5、D【解析】利用特殊值排除錯誤選項,利用函數(shù)單調(diào)性證明正確選項.【詳解】時,,但,所以A選項錯誤.時,,但,所以B選項錯誤.時,,但,所以C選項錯誤.在上遞增,所以,即D選項正確.故選:D6、B【解析】求出直線與平行的等價條件,再利用充分條件、必要條件的定義判斷作答.【詳解】由解得或,當(dāng)時,與平行,當(dāng)時,與平行,則直線與直線平行等價于或,所以是直線與直線互相平行的充分而不必要條件.故選:B7、C【解析】根據(jù)焦半徑公式即可求出【詳解】因為,所以,所以故選:C8、D【解析】設(shè)橢圓長半軸長為a1,雙曲線的半實軸長a2,焦距2c.根據(jù)橢圓及雙曲線的定義可以用a1,a2表示出|PF1|,|PF2|,在△F1PF2中根據(jù)余弦定理可得到,利用基本不等式可得結(jié)論【詳解】如圖,設(shè)橢圓的長半軸長為a1,雙曲線的半實軸長為a2,則根據(jù)橢圓及雙曲線的定義:|PF1|+|PF2|=2a1,|PF1|﹣|PF2|=2a2,∴|PF1|=a1+a2,|PF2|=a1﹣a2,設(shè)|F1F2|=2c,∠F1PF2=,則:在△PF1F2中,由余弦定理得,4c2=(a1+a2)2+(a1﹣a2)2﹣2(a1+a2)(a1﹣a2)cos∴化簡得:a12+3a22=4c2,該式可變成:,∴≥2∴,故選D【點(diǎn)睛】本題考查圓錐曲線的共同特征,考查通過橢圓與雙曲線的定義求焦點(diǎn)三角形三邊長,考查利用基本不等式求最值問題,屬于中檔題9、A【解析】恰好為拋物線的焦點(diǎn),等于到準(zhǔn)線的距離,要想最小,過圓心作拋物線的準(zhǔn)線的垂線交拋物線于點(diǎn),交圓于,最小值等于圓心到準(zhǔn)線的距離減去半徑4-1=.考點(diǎn):1.拋物線的定義;2.圓中的最值問題;10、B【解析】根據(jù)題意,在中,設(shè),則,進(jìn)而根據(jù)橢圓定義得,進(jìn)而可得離心率.【詳解】在中,設(shè),則,又由橢圓定義可知則離心率,故選:B.【點(diǎn)睛】本題考查橢圓離心率的計算,考查運(yùn)算求解能力,是基礎(chǔ)題.本題解題的關(guān)鍵在于根據(jù)已知條件,結(jié)合橢圓的定義,在焦點(diǎn)三角形中根據(jù)邊角關(guān)系求解.11、A【解析】先假設(shè)存在這樣的直線,分斜率存在和斜率不存在設(shè)出直線的方程,當(dāng)斜率k存在時,與雙曲線方程聯(lián)立,消去,得到關(guān)于的一元二次方程,直線與雙曲線相交于兩個不同點(diǎn),則,,又根據(jù)是線段的中點(diǎn),則,由此求出與矛盾,故不存在這樣的直線滿足題意;當(dāng)斜率不存在時,過點(diǎn)的直線不滿足條件,故符合條件的直線不存在.詳解】設(shè)過點(diǎn)的直線方程為或,①當(dāng)斜率存在時有,得(*)當(dāng)直線與雙曲線相交于兩個不同點(diǎn),則必有:,即又方程(*)的兩個不同的根是兩交點(diǎn)、的橫坐標(biāo),又為線段的中點(diǎn),,即,,使但使,因此當(dāng)時,方程①無實數(shù)解故過點(diǎn)與雙曲線交于兩點(diǎn)、且為線段中點(diǎn)的直線不存在②當(dāng)時,經(jīng)過點(diǎn)的直線不滿足條件.綜上,符合條件的直線不存在故選:A12、C【解析】作出圖形,過點(diǎn)作拋物線準(zhǔn)線的垂線,由拋物線的定義得,從而得出,再由、、三點(diǎn)共線時,取最小值得解.【詳解】,所以在拋物線的內(nèi)部,過點(diǎn)作拋物線準(zhǔn)線的垂線,由拋物線的定義得,,當(dāng)且僅當(dāng)、、三點(diǎn)共線時,等號成立,因此,的最小值為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、(1);(2).【解析】本題考查直線方程的基本求法:垂直直線的求法、點(diǎn)關(guān)于點(diǎn)對稱、點(diǎn)在直線上的待定系數(shù)法【詳解】(1)由題可得交點(diǎn),所以所求直線方程為,即;(2)設(shè)直線與直線相交于點(diǎn),因為線段恰被點(diǎn)平分,所以直線與直線的交點(diǎn)的坐標(biāo)為將點(diǎn),的坐標(biāo)分別代入,的方程,得方程組解得由點(diǎn)和點(diǎn)及兩點(diǎn)式,得直線的方程為,即【點(diǎn)睛】直線的考法主要以點(diǎn)的對稱和直線的平行與垂直為主.點(diǎn)關(guān)于點(diǎn)的對稱,點(diǎn)關(guān)于直線的對稱,直線關(guān)于直線的對稱,是重點(diǎn)考察內(nèi)容14、56【解析】根據(jù)系統(tǒng)抽樣的定義得到編號之間的關(guān)系,即可得到結(jié)論.【詳解】由已知樣本中的前兩個編號分別為02,08,則樣本數(shù)據(jù)間距為,則樣本容量為,則對應(yīng)的號碼數(shù),則當(dāng)時,x取得最大值為56故答案為:5615、10【解析】作出不等式區(qū)域,如圖所示:目標(biāo)最大值,即為平移直線的最大縱截距,當(dāng)直線經(jīng)過點(diǎn)時最大為10.故答案為10.點(diǎn)睛:本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.16、2【解析】根據(jù)等差數(shù)列性質(zhì)求得,再根據(jù)題意列出相關(guān)的方程組,解得答案.【詳解】為等差數(shù)列,故由可得:,即,故,故,所以,解得,故答案為:2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)先求導(dǎo)數(shù)再求最值即可求解答案;(2)由(1)確定切點(diǎn),從而也確定的斜率就可以求切線.【小問1詳解】設(shè),因為,所以,所以k的取值范圍為【小問2詳解】由(1)知,此時,即,所以此時曲線在點(diǎn)P處的切線方程為18、(1)3;(2)12.【解析】(1)聯(lián)立直線l與拋物線C的方程,求出A和B的橫坐標(biāo)即可得AFBF(2)設(shè)直線l方程為,與拋物線C方程聯(lián)立,求出線段AB長度求其最小值即可.【小問1詳解】設(shè),拋物線的焦點(diǎn)為,直線l經(jīng)過點(diǎn)F且斜率,直線l的方程為,將直線l方程與拋物線消去y可得,點(diǎn)A是第一象限內(nèi)的交點(diǎn),解方程得,∴.【小問2詳解】設(shè),由題知直線l斜率不為0,故設(shè)直線l的方程為:,代入拋物線C的方程化簡得,,∵>0,∴,∴,當(dāng)且僅當(dāng)m=0時取等號,∴AB長度最小值為12.19、(1)8640;(2)第一組頻率為,第二組頻率為.頻率分布直方圖見解析;(3)中位數(shù)為,均值為121.9【解析】(1)求出優(yōu)秀的頻率,計算出抽取的人員中優(yōu)秀學(xué)生數(shù)后可得全體優(yōu)秀學(xué)生數(shù);(2)由頻率和為1求得第一組、第二組頻率,然后可補(bǔ)齊頻率分布直方圖;(3)在頻率分布直方圖中計算出頻率對應(yīng)的值即為中位數(shù),用各組數(shù)據(jù)中點(diǎn)值乘以頻率后相加得均值【詳解】(1)由頻率分布直方圖,分?jǐn)?shù)在120分以上的頻率為,因此優(yōu)秀學(xué)生有(人);(2)設(shè)第一組頻率為,則第二組頻率為,所以,,第一組頻率為,第二組頻率為頻率分布直方圖如下:(3)前3組數(shù)據(jù)的頻率和為,中位數(shù)在第四組,設(shè)中位數(shù)為,則,均值為20、(1)焦點(diǎn)為,準(zhǔn)線方程:(2)【解析】(1)拋物線的標(biāo)準(zhǔn)方程為,焦點(diǎn)在軸上,開口向右,,即可求出拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;(2)現(xiàn)根據(jù)題意給出直線的方程,代入拋物線,求出兩交點(diǎn)的橫坐標(biāo)的和,然后利用焦半徑公式求解即可【小問1詳解】(1)拋物線的標(biāo)準(zhǔn)方程是,焦點(diǎn)在軸上,開口向右,,∴,∴焦點(diǎn)為,準(zhǔn)線方程:.【小問2詳解】∵直線l過拋物線C的焦點(diǎn)且傾斜角為,,∴直線L的方程為,代入拋物線化簡得,設(shè),則,所以故所求的弦長為1221、(1)(2)證明見解析【解析】(1)由圓與軸的交點(diǎn)分別為,可得拋物線的焦點(diǎn)為,從而即可求解;(2)設(shè)直線為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論