版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
錫林郭勒市重點中學2026屆高一上數(shù)學期末聯(lián)考模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.將函數(shù)y=sin(2x+)的圖象向右平移個單位長度后,得到的圖象對應的函數(shù)解析式為()A. B.C. D.2.設函數(shù),若,則的取值范圍為A. B.C. D.3.如果兩個函數(shù)的圖象經(jīng)過平移后能夠重合,則稱這兩個函數(shù)為“互為生成”函數(shù),給出下列函數(shù):;;;,其中“互為生成”函數(shù)的是A. B.C. D.4.若函數(shù),則的單調遞增區(qū)間為()A. B.C. D.5.設,表示兩個不同平面,表示一條直線,下列命題正確的是()A.若,,則.B.若,,則.C.若,,則.D.若,,則.6.已知為角終邊上一點,則()A. B.1C.2 D.37.將函數(shù)的圖象先向右平移個單位長度,再向下平移1個單位長度,所得圖象對應的函數(shù)解析式是()A. B.C. D.8.若角與終邊相同,則一定有()A. B.C., D.,9.已知函數(shù),.若在區(qū)間內(nèi)沒有零點,則的取值范圍是A. B.C. D.10.若直線的傾斜角為,且經(jīng)過點,則直線的方程是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)在區(qū)間上為增函數(shù),則實數(shù)的取值范圍為______.12.已知集合,若,求實數(shù)的值.13.若兩個正實數(shù),滿足,且不等式恒成立,則實數(shù)的取值范圍是__________14.角的終邊經(jīng)過點,且,則________.15.實數(shù),滿足,,則__________16.若函數(shù),則_________;不等式的解集為__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求函數(shù)的周期;(2)求函數(shù)的單調遞增區(qū)間.18.設圓的圓心在軸上,并且過兩點.(1)求圓的方程;(2)設直線與圓交于兩點,那么以為直徑的圓能否經(jīng)過原點,若能,請求出直線的方程;若不能,請說明理由.19.素有“天府之國”美稱的四川省成都市,屬于亞熱帶季風性濕潤氣候.據(jù)成都市氣象局多年的統(tǒng)計資料顯示,成都市從1月份到12月份的平均溫(℃)與月份數(shù)(月)近似滿足函數(shù),從1月份到7月份的月平均氣溫的散點圖如下圖所示,且1月份和7月份的平均氣溫分別為成都全年的最低和最高的月平均氣溫.(1)求月平均氣溫(℃)與月份數(shù)(月)的函數(shù)解析式;(2)推算出成都全年月平均氣溫低于但又不低于的是哪些月份.20.如圖,已知多面體PABCDE的底面ABCD是邊長為2的菱形,PA⊥底面ABCD,ED//PA,且PA=2ED=2(1)證明:平面PAC⊥平面PCE;(2)若直線PC與平面ABCD所成的角為45°,求直線CD與平面PCE所成角的正弦值21.在中,角A,B,C為三個內(nèi)角,已知,.(1)求的值;(2)若,D為AB的中點,求CD的長及的面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】直接利用函數(shù)圖像變化原則:“左加右減,上加下減”得到平移后的函數(shù)解析式【詳解】函數(shù)圖像向右平移個單位,由得,故選B【點睛】本題考查函數(shù)圖像變換:“左加右減,上加下減”,需注意“左加右減”時平移量作用在x上,即將變成,是函數(shù)圖像平移了個單位,而非個單位2、A【解析】根據(jù)對數(shù)函數(shù)的性質單調遞增,,列出不等式,解出即可.【詳解】∵函數(shù)在定義域內(nèi)單調遞增,,∴不等式等價于,解得,故選A.【點睛】本題主要考查了對數(shù)不等式的解法,在解題過程中要始終注意函數(shù)的定義域,也是易錯點,屬于中檔題.3、D【解析】根據(jù)“互為生成”函數(shù)的定義,利用三角恒等變換化簡函數(shù)的解析式,再結合函數(shù)的圖象變換規(guī)律,得出結論【詳解】∵;;;,故把中的函數(shù)的圖象向右平移后再向下平移1個單位,可得中的函數(shù)圖象,故為“互為生成”函數(shù),故選D【點睛】本題主要主要考查新定義,三角恒等變換,函數(shù)的圖象變換規(guī)律,屬于中檔題4、A【解析】令,則,根據(jù)解析式,先求出函數(shù)定義域,結合二次函數(shù)以及對數(shù)函數(shù)的性質,即可得出結果.【詳解】令,則,由真數(shù)得,∵拋物線的開口向下,對稱軸,∴在區(qū)間上單調遞增,在區(qū)間上單調遞減,又∵在定義域上單調遞減,由復合函數(shù)的單調性可得:的單調遞增區(qū)間為.故選:A.5、C【解析】由或判斷;由,或相交判斷;根據(jù)線面平行與面面平行的定義判斷;由或相交,判斷.【詳解】若,,則或,不正確;若,,則,或相交,不正確;若,,可得沒有公共點,即,正確;若,,則或相交,不正確,故選C.【點睛】本題主要考查空間平行關系的性質與判斷,屬于基礎題.空間直線、平面平行或垂直等位置關系命題的真假判斷,常采用畫圖(尤其是畫長方體)、現(xiàn)實實物判斷法(如墻角、桌面等)、排除篩選法等;另外,若原命題不太容易判斷真假,可以考慮它的逆否命題,判斷它的逆否命題真假,原命題與逆否命題等價.6、B【解析】先根據(jù)三角函數(shù)的定義求出,再利用齊次化將弦化切進行求解.【詳解】為角終邊上一點,故,故.故選:B7、A【解析】利用三角函數(shù)的伸縮平移變換規(guī)律求解變換后的解析式,再根據(jù)二倍角公式化簡.【詳解】將函數(shù)的圖象先向右平移個單位長度,得函數(shù)解析式為,再將函數(shù)向下平移1個單位長度,得函數(shù)解析式為.故選:A8、C【解析】根據(jù)終邊相同角的表示方法判斷【詳解】角與終邊相同,則,,只有C選項滿足,故選:C9、D【解析】先把化成,求出的零點的一般形式為,根據(jù)在區(qū)間內(nèi)沒有零點可得關于的不等式組,結合為整數(shù)可得其相應的取值,從而得到所求的取值范圍.【詳解】由題設有,令,則有即因為在區(qū)間內(nèi)沒有零點,故存在整數(shù),使得,即,因為,所以且,故或,所以或,故選:D.【點睛】本題考查三角函數(shù)在給定范圍上的零點的存在性問題,此類問題可轉化為不等式組的整數(shù)解問題,本題屬于難題.10、B【解析】直線l的斜率等于tan45°=1,由點斜式求得直線l的方程為y-0=,即故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由復合函數(shù)的同增異減性質判斷得在上單調遞減,再結合對稱軸和區(qū)間邊界值建立不等式即可求解.【詳解】由復合函數(shù)的同增異減性質可得,在上嚴格單調遞減,二次函數(shù)開口向上,對稱軸為所以,即故答案為:12、【解析】根據(jù)題意,可得或,然后根據(jù)結果進行驗證即可.【詳解】由題可知:集合,所以或,則或當時,,不符合集合元素的互異性,當時,,符合題意所以【點睛】本題考查元素與集合的關系求參數(shù),考查計算能力,屬基礎題.13、【解析】根據(jù)題意,只要即可,再根據(jù)基本不等式中的“”的妙用,求得,解不等式即可得解.【詳解】根據(jù)題意先求得最小值,由,得,所以若要不等式恒成立,只要,即,解得,所以.故答案為:14、【解析】由題意利用任意角的三角函數(shù)的定義直接計算【詳解】角的終邊經(jīng)過點,且,解得.故答案為:15、8【解析】因為,,所以,,因此由,即兩交點關于(4,4)對稱,所以8點睛:利用函數(shù)圖象可以解決很多與函數(shù)有關的問題,如利用函數(shù)的圖象解決函數(shù)性質問題,函數(shù)的零點、方程根的問題,有關不等式的問題等.解決上述問題的關鍵是根據(jù)題意畫出相應函數(shù)的圖象,利用數(shù)形結合的思想求解.16、①.②.【解析】代入求值即可求出,分與兩種情況解不等式,最后求并集即可.【詳解】,當時,,所以,解得:;當時,,解得:,所以,綜上:.故答案為:,三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)先把函數(shù)化簡為,利用正弦型函數(shù)的周期公式,即得解(2)由解出的范圍就是所要求的遞增區(qū)間.【小問1詳解】故函數(shù)的周期【小問2詳解】由,得,所以單調遞增區(qū)間為18、(1)(2)或.【解析】(1)圓的圓心在的垂直平分線上,又的中點為,,∴的中垂線為.∵圓的圓心在軸上,∴圓的圓心為,因此,圓的半徑,(2)設M,N的中點為H,假如以為直徑的圓能過原點,則.,設是直線與圓的交點,將代入圓的方程得:.∴.∴的中點為.代入即可求得,解得.再檢驗即可試題解析:(1)∵圓的圓心在的垂直平分線上,又的中點為,,∴的中垂線為.∵圓的圓心在軸上,∴圓的圓心為,因此,圓的半徑,∴圓的方程為.(2)設是直線與圓的交點,將代入圓的方程得:.∴.∴的中點為.假如以為直徑的圓能過原點,則.∵圓心到直線的距離為,∴.∴,解得.經(jīng)檢驗時,直線與圓均相交,∴的方程為或.點睛:直線和圓的方程的應用,直線和圓的位置關系,務必牢記d與r的大小關系對應的位置關系結論的理解.19、(1).(2)3月、4月、9月、10月【解析】(1)利用五點法求出函數(shù)解析式;(2)解不等式可得結論【詳解】(1)由題意,,,,又,而,∴∴(2)由,解得或或,又,∴3,4,9,10∴全年月平均氣溫低于但又不低于的是3月、4月、9月、10月【點睛】方法點睛:本題三角函數(shù)應用,解題關鍵是根據(jù)已知函數(shù)模型求出函數(shù)解析式,掌握五點法是解題基礎,然后根據(jù)函數(shù)解析式列式(方程或不等式)計算求解20、(1)見解析(2)2【解析】1連接BD,交AC于點O,設PC中點為F,連接OF,EF,先證出BD∥EF,再證出EF⊥平面PAC,,結合面面垂直的判定定理即可證平面PAC⊥平面PCE;2先證明∠PCA=45°,設CD的中點為M,連接AM,所以點P到平面CDE的距離與點A到平面CDE的距離相等,即h2解析:(1)證明:連接BD,交AC于點O,設PC中點為F,連接OF,EF∵O,F(xiàn)分別為AC,PC的中點,∴OF//PA,且OF=1∵DE//PA,且DE=1∴OF//DE,且OF=DE,∴四邊形OFED為平行四邊形,∴OD//EF,即BD//EF,∵PA⊥平面ABCD,BD?平面ABCD,∴PA⊥BD,∵ABCD是菱形,∴BD⊥AC∵PA∩AC=A,∴BD⊥平面PAC,∵BD//EF,∴EF⊥平面PAC,∵FE?平面PCE,∴平面PAC⊥平面PCE(2)因為直線PC與平面ABCD所成角為45°,所以∠PCA=45°,所以AC=PA=2,所以AC=AB,故ΔABC為等邊三角形,設CD的中點為M,連接AM,則AM⊥CD,設點D到平面PCE的距離為h1,點P到平面CDE的距離為h則由VD-PCE=V因為ED⊥面ABCD,AM?面ABCD,所以ED⊥AM,又AM⊥CD,CD∩DE=D,∴AM⊥面CDE;因為PA//DE,PA?平面CDE,DE?面CDE,所以PA//面CDE,所以點P到平面CDE的距離與點A到平面CDE的距離相等,即h2因為PE=EC=5,PC=22,所以又SΔCDE=1,代入(*)得6?設C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貸款知識介紹
- 貸款客戶經(jīng)理培訓課件
- 2026年橋梁施工中應急預案的制定與演練
- 財經(jīng)紀律培訓
- 2026年橋梁施工現(xiàn)場應急管理與質量控制
- 2026年建筑設備智能監(jiān)測與故障處理技術
- 骨髓瘤CT診斷課件
- 肺部感染疾病的護理
- 2026年伊通滿族自治縣衛(wèi)生系統(tǒng)事業(yè)單位公開招聘工作人員(含專項招聘高校畢業(yè)生)備考題庫附答案詳解
- 2026年上海外服(海南)人力資源服務有限公司招聘備考題庫附答案詳解
- 2025屆高考語文一輪復習:二元思辨類作文思辨關系高階思維
- 預制混凝土構件質量控制
- 德佑房屋買賣合同
- 健康管理方案設計案例分析
- 2024高考英語應用文寫作真題手把手:2023全國乙卷素材
- 玻璃加工公司管理制度
- 七年級數(shù)學一元一次方程應用題復習題及答案
- 儲能電站檢修規(guī)程
- 離婚冷靜期制度的構建與完善
- 外掛鋼樓梯專項施工方案
- 企業(yè)盡職調查內(nèi)容提綱-中英文對照
評論
0/150
提交評論