版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2026屆山東省單縣第一中學高三上數(shù)學期末教學質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.射線測厚技術原理公式為,其中分別為射線穿過被測物前后的強度,是自然對數(shù)的底數(shù),為被測物厚度,為被測物的密度,是被測物對射線的吸收系數(shù).工業(yè)上通常用镅241()低能射線測量鋼板的厚度.若這種射線對鋼板的半價層厚度為0.8,鋼的密度為7.6,則這種射線的吸收系數(shù)為()(注:半價層厚度是指將已知射線強度減弱為一半的某種物質(zhì)厚度,,結(jié)果精確到0.001)A.0.110 B.0.112 C. D.2.執(zhí)行下面的程序框圖,則輸出的值為()A. B. C. D.3.已知,,則的大小關系為()A. B. C. D.4.已知數(shù)列的前n項和為,,且對于任意,滿足,則()A. B. C. D.5.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立6.達芬奇的經(jīng)典之作《蒙娜麗莎》舉世聞名.如圖,畫中女子神秘的微笑,,數(shù)百年來讓無數(shù)觀賞者人迷.某業(yè)余愛好者對《蒙娜麗莎》的縮小影像作品進行了粗略測繪,將畫中女子的嘴唇近似看作一個圓弧,在嘴角處作圓弧的切線,兩條切線交于點,測得如下數(shù)據(jù):(其中).根據(jù)測量得到的結(jié)果推算:將《蒙娜麗莎》中女子的嘴唇視作的圓弧對應的圓心角大約等于()A. B. C. D.7.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件8.將3個黑球3個白球和1個紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種9.已知集合,,若AB,則實數(shù)的取值范圍是()A. B. C. D.10.是的()條件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要11.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形12.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.《九章算術》中記載了“今有共買豕,人出一百,盈一百;人出九十,適足。問人數(shù)、豕價各幾何?”.其意思是“若干個人合買一頭豬,若每人出100,則會剩下100;若每人出90,則不多也不少。問人數(shù)、豬價各多少?”.設分別為人數(shù)、豬價,則___,___.14.在棱長為的正方體中,是正方形的中心,為的中點,過的平面與直線垂直,則平面截正方體所得的截面面積為______.15.公比為正數(shù)的等比數(shù)列的前項和為,若,,則的值為__________.16.圓關于直線的對稱圓的方程為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在三棱柱中,為等邊三角形,,,平面,是線段上靠近的三等分點.(1)求證:;(2)求直線與平面所成角的正弦值.18.(12分)在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面積.19.(12分)在直角坐標系中,長為3的線段的兩端點分別在軸、軸上滑動,點為線段上的點,且滿足.記點的軌跡為曲線.(1)求曲線的方程;(2)若點為曲線上的兩個動點,記,判斷是否存在常數(shù)使得點到直線的距離為定值?若存在,求出常數(shù)的值和這個定值;若不存在,請說明理由.20.(12分)如圖,三棱柱中,底面是等邊三角形,側(cè)面是矩形,是的中點,是棱上的點,且.(1)證明:平面;(2)若,求二面角的余弦值.21.(12分)已知在中,角,,的對邊分別為,,,的面積為.(1)求證:;(2)若,求的值.22.(10分)已知數(shù)列滿足,,,且.(1)求證:數(shù)列為等比數(shù)列,并求出數(shù)列的通項公式;(2)設,求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)題意知,,代入公式,求出即可.【詳解】由題意可得,因為,所以,即.所以這種射線的吸收系數(shù)為.故選:C【點睛】本題主要考查知識的遷移能力,把數(shù)學知識與物理知識相融合;重點考查指數(shù)型函數(shù),利用指數(shù)的相關性質(zhì)來研究指數(shù)型函數(shù)的性質(zhì),以及解指數(shù)型方程;屬于中檔題.2、D【解析】
根據(jù)框圖,模擬程序運行,即可求出答案.【詳解】運行程序,,
,,,,,結(jié)束循環(huán),故輸出,故選:D.【點睛】本題主要考查了程序框圖,循環(huán)結(jié)構(gòu),條件分支結(jié)構(gòu),屬于中檔題.3、D【解析】
由指數(shù)函數(shù)的圖像與性質(zhì)易得最小,利用作差法,結(jié)合對數(shù)換底公式及基本不等式的性質(zhì)即可比較和的大小關系,進而得解.【詳解】根據(jù)指數(shù)函數(shù)的圖像與性質(zhì)可知,由對數(shù)函數(shù)的圖像與性質(zhì)可知,,所以最?。欢蓪?shù)換底公式化簡可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點睛】本題考查了指數(shù)式與對數(shù)式的化簡變形,對數(shù)換底公式及基本不等式的簡單應用,作差法比較大小,屬于中檔題.4、D【解析】
利用數(shù)列的遞推關系式判斷求解數(shù)列的通項公式,然后求解數(shù)列的和,判斷選項的正誤即可.【詳解】當時,.所以數(shù)列從第2項起為等差數(shù)列,,所以,,.,,.故選:.【點睛】本題考查數(shù)列的遞推關系式的應用、數(shù)列求和以及數(shù)列的通項公式的求法,考查轉(zhuǎn)化思想以及計算能力,是中檔題.5、A【解析】試題分析:原命題為特稱命題,故其否定為全稱命題,即.考點:全稱命題.6、A【解析】
由已知,設.可得.于是可得,進而得出結(jié)論.【詳解】解:依題意,設.則.,.設《蒙娜麗莎》中女子的嘴唇視作的圓弧對應的圓心角為.則,.故選:A.【點睛】本題考查了直角三角形的邊角關系、三角函數(shù)的單調(diào)性、切線的性質(zhì),考查了推理能力與計算能力,屬于中檔題.7、B【解析】
先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據(jù)此可知“”是“”的必要不充分條件.故選:B【點睛】本題考查了必要不充分條件的判定,考查了學生數(shù)學運算,邏輯推理能力,屬于基礎題.8、D【解析】
采取分類計數(shù)和分步計數(shù)相結(jié)合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個相同顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時將紅球插入6個球組成的7個空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時紅球只能插入兩個相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【點睛】本題考查排列組合公式的具體應用,插空法的應用,屬于基礎題9、D【解析】
先化簡,再根據(jù),且AB求解.【詳解】因為,又因為,且AB,所以.故選:D【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎題.10、B【解析】
利用充分條件、必要條件與集合包含關系之間的等價關系,即可得出。【詳解】設對應的集合是,由解得且對應的集合是,所以,故是的必要不充分條件,故選B。【點睛】本題主要考查充分條件、必要條件的判斷方法——集合關系法。設,如果,則是的充分條件;如果B則是的充分不必要條件;如果,則是的必要條件;如果,則是的必要不充分條件。11、B【解析】
化簡得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結(jié)合0<A<π,可求A=π【詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故選:B【點睛】本題主要考查了對數(shù)的運算性質(zhì)的應用,兩角差的正弦公式的應用,解題的關鍵是靈活利用基本公式,屬于基礎題.12、A【解析】
將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應在棱柱上下底面三角形的外心連線上,在中,計算半徑即可.【詳解】由,,可知平面.將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A【點睛】本題考查了三棱錐外接球的表面積,考查了學生空間想象,邏輯推理,綜合分析,數(shù)學運算的能力,屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13、10900【解析】
由題意列出方程組,求解即可.【詳解】由題意可得,解得.故答案為10900【點睛】本題主要考查二元一次方程組的解法,用消元法來求解即可,屬于基礎題型.14、【解析】
確定平面即為平面,四邊形是菱形,計算面積得到答案.【詳解】如圖,在正方體中,記的中點為,連接,則平面即為平面.證明如下:由正方體的性質(zhì)可知,,則,四點共面,記的中點為,連接,易證.連接,則,所以平面,則.同理可證,,,則平面,所以平面即平面,且四邊形即平面截正方體所得的截面.因為正方體的棱長為,易知四邊形是菱形,其對角線,,所以其面積.故答案為:【點睛】本題考查了正方體的截面面積,意在考查學生的空間想象能力和計算能力.15、56【解析】
根據(jù)已知條件求等比數(shù)列的首項和公比,再代入等比數(shù)列的通項公式,即可得到答案.【詳解】,,.故答案為:.【點睛】本題考查等比數(shù)列的通項公式和前項和公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.16、【解析】
求出圓心關于直線的對稱點,即可得解.【詳解】的圓心為,關于對稱點設為,則有:,解得,所以對稱后的圓心為,故所求圓的方程為.故答案為:【點睛】此題考查求圓關于直線的對稱圓方程,關鍵在于準確求出圓心關于直線的對稱點坐標.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)由,故,所以四邊形為菱形,再通過,證得,所以四邊形為正方形,得到.(2)根據(jù)(1)的論證,建立空間直角坐標,設平面的法向量為,由求得,再由,利用線面角的向量法公式求解.【詳解】(1)因為,故,所以四邊形為菱形,而平面,故.因為,故,故,即四邊形為正方形,故.(2)依題意,.在正方形中,,故以為原點,所在直線分別為、、軸,建立如圖所示的空間直角坐標系;如圖所示:不紡設,則,又因為,所以.所以.設平面的法向量為,則,即,令,則.于是.又因為,設直線與平面所成角為,則,所以直線與平面所成角的正弦值為.【點睛】本題考查空間線面的位置關系、線面成角,還考查空間想象能力以及數(shù)形結(jié)合思想,屬于中檔題.18、(1);(2).【解析】
(1)由正弦定理化簡已知等式可得sinBcosA﹣sinAsinB=1,結(jié)合sinB>1,可求tanA=,結(jié)合范圍A∈(1,π),可得A的值;(2)由已知可求C=,可求b的值,根據(jù)三角形的面積公式即可計算得解.【詳解】(1)∵bcosA﹣asinB=1.∴由正弦定理可得:sinBcosA﹣sinAsinB=1,∵sinB>1,∴cosA=sinA,∴tanA=,∵A∈(1,π),∴A=;(2)∵a=2,B=,A=,∴C=,根據(jù)正弦定理得到∴b=6,∴S△ABC=ab==6.【點睛】本題主要考查了正弦定理,三角形的面積公式在解三角形中的綜合應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎題.19、(1)(2)存在;常數(shù),定值【解析】
(1)設出的坐標,利用以及,求得曲線的方程.(2)當直線的斜率存在時,設出直線的方程,求得到直線的距離.聯(lián)立直線的方程和曲線的方程,寫出根與系數(shù)關系,結(jié)合以及為定值,求得的值.當直線的斜率不存在時,驗證.由此得到存在常數(shù),且定值.【詳解】(1)解析:(1)設,,由題可得,解得又,即,消去得:(2)當直線的斜率存在時,設直線的方程為設,由可得:由點到的距離為定值可得(為常數(shù))即得:即,又為定值時,,此時,且符合當直線的斜率不存在時,設直線方程為由題可得,時,,經(jīng)檢驗,符合條件綜上可知,存在常數(shù),且定值【點睛】本小題主要考查軌跡方程的求法,考查直線和橢圓的位置關系,考查運算求解能力,考查橢圓中的定值問題,屬于難題.20、(1)見解析(2)【解析】
(1)連結(jié)BM,推導出BC⊥BB1,AA1⊥BC,從而AA1⊥MC,進而AA1⊥平面BCM,AA1⊥MB,推導出四邊形AMNP是平行四邊形,從而MN∥AP,由此能證明MN∥平面ABC.(2)推導出△ABA1是等腰直角三角形,設AB,則AA1=2a,BM=AM=a,推導出MC⊥BM,MC⊥AA1,BM⊥AA1,以M為坐標原點,MA1,MB,MC為x,y,z軸,建立空間直角坐標系,利用向量法能求出二面角A﹣CM﹣N的余弦值.【詳解】(1)如圖1,在三棱柱中,連結(jié),因為是矩形,所以,因為,所以,又因為,,所以平面,所以,又因為,所以是中點,取中點,連結(jié),,因為是的中點,則且,所以且,所以四邊形是平行四邊
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023云南省醫(yī)療機構(gòu)超藥品說明書適應證用藥專家共識
- 云南工商學院《網(wǎng)絡故障排查技能大賽實訓》2024-2025 學年第一學期期末試卷
- 新高一化學暑假銜接(人教版):第16講 原子結(jié)構(gòu)和元素周期表【學生版】
- 邊境安全員培訓課件
- 車險行車安全培訓課件
- 內(nèi)科主治醫(yī)師練習試題及答案
- 煤礦井下干探放水方案
- 2026年鐵路類職業(yè)測試題及答案
- 《滑輪》物理授課課件
- 車間級安全教育培訓學時課件
- 腎病綜合征中醫(yī)護理查房
- 山東省濟南市歷城區(qū)2024-2025學年八年級上學期期末考試英語試卷
- DB51T 3115-2023 四川省政務服務評價數(shù)據(jù)匯聚規(guī)范
- JJF(京) 151-2024 藥物溶出度儀溫度參數(shù)校準規(guī)范
- (新版)特種設備安全管理取證考試題庫(濃縮500題)
- 標準維修維護保養(yǎng)服務合同
- 蘇教譯林版五年級上冊英語第八單元Unit8《At Christmas》單元測試卷
- 《社會調(diào)查研究與方法》課程復習題-課程ID-01304試卷號-22196
- 電力工程有限公司管理制度制度范本
- 科研倫理與學術規(guī)范-課后作業(yè)答案
- 頂管工程施工檢查驗收表
評論
0/150
提交評論