2026屆貴州省銅仁市德江縣第二中學數(shù)學高二上期末學業(yè)水平測試試題含解析_第1頁
2026屆貴州省銅仁市德江縣第二中學數(shù)學高二上期末學業(yè)水平測試試題含解析_第2頁
2026屆貴州省銅仁市德江縣第二中學數(shù)學高二上期末學業(yè)水平測試試題含解析_第3頁
2026屆貴州省銅仁市德江縣第二中學數(shù)學高二上期末學業(yè)水平測試試題含解析_第4頁
2026屆貴州省銅仁市德江縣第二中學數(shù)學高二上期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2026屆貴州省銅仁市德江縣第二中學數(shù)學高二上期末學業(yè)水平測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點,點在拋物線上,過點的直線與直線垂直相交于點,,則的值為()A. B.C. D.2.直線x+y﹣1=0被圓(x+1)2+y2=3截得的弦長等于()A. B.2C.2 D.43.已知向量,,則以下說法不正確的是()A. B.C. D.4.數(shù)學家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱為三角形的歐拉線已知的頂點,則的歐拉線方程為()A. B.C. D.5.設是兩個不同的平面,是一條直線,以下命題正確的是A.若,則 B.若,則C.若,則 D.若,則6.一動圓與兩圓x2+y2=1和x2+y2﹣8x+12=0都外切,則動圓圓心軌跡為()A.圓 B.橢圓C.雙曲線的一支 D.拋物線7.若點在橢圓的外部,則的取值范圍為()A. B.C. D.8.已知函數(shù)與,則它們的圖象交點個數(shù)為()A.0 B.1C.2 D.不確定9.如圖,用4種不同的顏色對A,B,C,D四個區(qū)域涂色,要求相鄰的兩個區(qū)域不能用同一種顏色,則不同的涂色方法有()A.24種 B.48種C.72種 D.96種10.等比數(shù)列的前項和為,若,則()A. B.8C.1或 D.或11.口袋中裝有大小形狀相同的紅球3個,白球3個,小明從中不放回的逐一取球,已知在第一次取得紅球的條件下,第二次取得白球的概率為()A.0.4 B.0.5C.0.6 D.0.7512.命題“若,都是偶數(shù),則也是偶數(shù)”的逆否命題是A.若是偶數(shù),則與不都是偶數(shù)B.若是偶數(shù),則與都不是偶數(shù)C.若不是偶數(shù),則與不都是偶數(shù)D.若不是偶數(shù),則與都不是偶數(shù)二、填空題:本題共4小題,每小題5分,共20分。13.若復數(shù)z=為純虛數(shù)(),則|z|=_____.14.在下列所示電路圖中,下列說法正確的是____(填序號)(1)如圖①所示,開關A閉合是燈泡B亮的充分不必要條件;(2)如圖②所示,開關A閉合是燈泡B亮的必要不充分條件;(3)如圖③所示,開關A閉合是燈泡B亮的充要條件;(4)如圖④所示,開關A閉合是燈泡B亮的必要不充分條件15.已知數(shù)列滿足,若對任意恒成立,則實數(shù)的取值范圍為________16.設數(shù)列的前n項和為,若,且是等差數(shù)列.則的值為__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若在單調(diào)遞增,求的取值范圍;(2)若,求證:.18.(12分)已知橢圓的左、右兩個焦點,,離心率,短軸長為21求橢圓的方程;2如圖,點A為橢圓上一動點非長軸端點,的延長線與橢圓交于B點,AO的延長線與橢圓交于C點,求面積的最大值19.(12分)已知命題:對任意實數(shù)都有恒成立;命題:關于的方程有實數(shù)根(1)若命題為假命題,求實數(shù)的取值范圍;(2)如果“”為真命題,且“”為假命題,求實數(shù)的取值范圍20.(12分)已知函數(shù)(1)當時,求的單調(diào)遞減區(qū)間;(2)若關于的方程恰有兩個不等實根,求實數(shù)的取值范圍21.(12分)在下面兩個條件中任選一個條件,補充在后面問題中的橫線上,并完成解答.條件①:展開式前三項的二項式系數(shù)的和等于37;條件②:第3項與第7項的二項式系數(shù)相等;問題:在二項式的展開式中,已知__________.(1)求展開式中二項式系數(shù)最大的項;(2)設,求的值;(3)求的展開式中的系數(shù).22.(10分)如圖,五邊形為東京奧運會公路自行車比賽賽道平面設計圖,根據(jù)比賽需要,在賽道設計時需預留出,兩條服務通道(不考慮寬度),,,,,為賽道.現(xiàn)已知,,千米,千米(1)求服務通道的長(2)在上述條件下,如何設計才能使折線賽道(即)的長度最大,并求最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題,由于過拋物線上一點的直線與直線垂直相交于點,可得,又,故,所以的坐標為,由余弦定理可得.故選:D.考點:拋物線的定義、余弦定理【點睛】本題主要考查拋物線的定義與性質(zhì),考查學生的計算能力,屬于中檔題2、B【解析】如圖,圓(x+1)2+y2=3的圓心為M(?1,0),圓半徑|AM|=,圓心M(?1,0)到直線x+y?1=0的距離:|,∴直線x+y?1=0被圓(x+1)2+y2=3截得的弦長:.故選B.點睛:本題考查圓的標準方程以及直線和圓的位置關系.判斷直線與圓的位置關系一般有兩種方法:1.代數(shù)法:將直線方程與圓方程聯(lián)立方程組,再將二元方程組轉(zhuǎn)化為一元二次方程,該方程解的情況即對應直線與圓的位置關系.這種方法具有一般性,適合于判斷直線與圓錐曲線的位置關系,但是計算量較大.2.幾何法:圓心到直線的距離與圓半徑比較大小,即可判斷直線與圓的位置關系.這種方法的特點是計算量較?。斨本€與圓相交時,可利用垂徑定理得出圓心到直線的距離,弦長和半徑的勾股關系.3、C【解析】可根據(jù)已知的和的坐標,通過計算向量數(shù)量積、向量的模,即可做出判斷.【詳解】因為向量,,所以,故,所以選項A正確;,,所以,故選項B正確;,所以,故選項C錯誤;,所以,,故,所以選項D正確.故選:C.4、D【解析】根據(jù)題意得出的歐拉線即為線段的垂直平分線,然后求出線段的垂直平分線的方程即可.【詳解】因為,所以線段的中點的坐標,線段所在直線的斜率,則線段的垂直平分線的方程為,即,因為,所以的外心、重心、垂心都在線段的垂直平分線上,所以的歐拉線方程為.故選:D【點睛】本題主要考走查直線的方程,解題的關鍵是準確找出歐拉線,屬于中檔題.5、C【解析】對于A、B、D均可能出現(xiàn),而對于C是正確的6、C【解析】設動圓圓心,與兩圓x2+y2=1和x2+y2﹣8x+12=0都外切,列出幾何關系式,化簡,再根據(jù)圓錐曲線的定義,可得到動圓圓心軌跡.【詳解】設動圓圓心,半徑為,圓x2+y2=1的圓心為,半徑為,圓x2+y2﹣8x+12=0,得,則圓心,半徑為,根據(jù)圓與圓相切,則,,兩式相減得,根據(jù)定義可得動圓圓心軌跡為雙曲線的一支.故選:C【點睛】本題考查了兩圓的位置關系,圓錐曲線的定義,屬于基礎題.7、B【解析】根據(jù)題中條件,得到,求解,即可得出結果.【詳解】因為點在橢圓的外部,所以,即,解得或.故選:B.8、B【解析】令,判斷的單調(diào)性并計算的極值,根據(jù)極值與0的大小關系判斷的零點個數(shù),得出答案.【詳解】令,則,由,得,∴當時,,當時,.∴當時,取得最小值,∴只有一個零點,即與的圖象只有1個交點.故選:B.9、B【解析】按涂色順序進行分四步,根據(jù)分步乘法計數(shù)原理可得解.【詳解】按涂色順序進行分四步:涂A部分時,有4種涂法;涂B部分時,有3種涂法;涂C部分時,有2種涂法;涂D部分時,有2種涂法.由分步乘法計數(shù)原理,得不同的涂色方法共有種.故選:B.10、C【解析】根據(jù)等比數(shù)列的前項和公式及等比數(shù)列通項公式即可求解.【詳解】設等比數(shù)列的公比為,則因為,所以,即,解得或,所以或.故選:C.11、C【解析】求出第一次取得紅球的事件、第一次取紅球第二次取白球的事件概率,再利用條件概率公式計算作答.【詳解】記“第一次取得紅球”為事件A,“第二次取得白球”為事件B,則,,于是得,所以在第一次取得紅球的條件下,第二次取得白球的概率為0.6.故選:C12、C【解析】命題的逆否命題是將條件和結論對換后分別否定,因此“若都是偶數(shù),則也是偶數(shù)”的逆否命題是若不是偶數(shù),則與不都是偶數(shù)考點:四種命題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用復數(shù)z=為純虛數(shù)求出a,即可求出|z|.【詳解】z=.由純虛數(shù)的定義知,,解得.所以.故|z|=.故答案為:.14、(1)(2)(3)【解析】充分不必要條件是該條件成立時,可推出結果,但結果不一定需要該條件成立;必要條件是有結果必須有這一條件,但是有這一條件還不夠;充要條件是條件和結果可以互推;條件和結果沒有互推關系的是既不充分也不必要條件【詳解】(1)開關閉合,燈泡亮;而燈泡亮時,開關不一定閉合,所以開關閉合是燈泡亮的充分不必要條件,選項(1)正確.(2)開關閉合,燈泡不一定亮;而燈泡亮時,開關必須閉合,所以開關閉合是燈泡亮的必要不充分條件,選項(2)正確.(3)開關閉合,燈泡亮;而燈泡亮時,開關必須閉合,所以開關閉合是燈泡亮的充要條件,選項(3)正確.(4)開關閉合,燈泡不一定亮;而燈泡亮時,開關不一定閉合,所以開關閉合是燈泡亮的既不充分也不必要條件,選項(4)錯誤.故答案為(1)(2)(3).15、【解析】根據(jù)給定條件求出,構造新數(shù)列并借助單調(diào)性求解作答.【詳解】在數(shù)列中,,當,時,,則有,而滿足上式,因此,,,顯然數(shù)列是遞增數(shù)列,且,,又對任意恒成立,則,所以實數(shù)的取值范圍為.故答案為:【點睛】思路點睛:給定數(shù)列的前項和或者前項積,求通項時,先要按和分段求,然后看時是否滿足時的表達式,若不滿足,就必須分段表達.16、52【解析】根據(jù)給定條件求出,再求出數(shù)列的通項即可計算作答.【詳解】依題意,因是等差數(shù)列,則其公差,于是得,,當時,,而滿足上式,因此,,所以.故答案為:52三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)由函數(shù)在上單調(diào)遞增,則在上恒成立,由求解.(2)由(1)的結論,取,有,即在上恒成立,然后令,有求解.【詳解】(1)因為函數(shù)在上單調(diào)遞增,所以在上恒成立,則有在上恒成立,即.令函數(shù),,所以時,,在上單調(diào)遞增,所以,所以有,即,因此.(2)由(1)可知當時,為增函數(shù),不妨取,則有在上單調(diào)遞增,所以,即有在上恒成立,令,則有,所以,所以,因此.【點睛】方法點睛:(1)利用導數(shù)研究函數(shù)的單調(diào)性的關鍵在于準確判定導數(shù)的符號,當f(x)含參數(shù)時,需依據(jù)參數(shù)取值對不等式解集的影響進行分類討論.(2)若可導函數(shù)f(x)在指定的區(qū)間D上單調(diào)遞增(減),求參數(shù)范圍問題,可轉(zhuǎn)化為f′(x)≥0(或f′(x)≤0)恒成立問題,從而構建不等式,要注意“=”是否可以取到18、(1)橢圓的標準方程為(2)面積的最大值為【解析】(1)由題意得,再由,標準方程為;(2)①當?shù)男甭什淮嬖跁r,不妨??;②當?shù)男甭蚀嬖跁r,設的方程為,聯(lián)立方程組,又直線的距離點到直線的距離為面積的最大值為.試題解析:(1)由題意得,解得,∵,∴,,故橢圓的標準方程為(2)①當直線的斜率不存在時,不妨取,故;②當直線的斜率存在時,設直線的方程為,聯(lián)立方程組,化簡得,設點到直線的距離因為是線段的中點,所以點到直線的距離為,∴綜上,面積的最大值為.【點睛】本題主要考查橢圓的標準方程及其性質(zhì)、點到直線的距離、弦長公式和三角形面積公式等知識,涉及函數(shù)與方程思想、數(shù)形結合思想分類與整合、轉(zhuǎn)化與化歸等思想,并考查運算求解能力和邏輯推理能力,屬于較難題型.第一小題由題意由方程思想建立方程組求得標準方程為;(2)利用分類與整合思想分當?shù)男甭什淮嬖谂c存在兩種情況求解,在斜率存在時,由舍而不求法求得,再求得點到直線的距離為面積的最大值為.19、(1);(2)【解析】(1)先分別求出命題為真命題和命題為真命題時參數(shù)的范圍,則可得當命題為假命題,實數(shù)的取值范圍(2)由“”為真命題,且“”為假命題,則命題,一真一假,再分真,且假,和真,且假兩種情況分別求出參數(shù)的范圍,再綜合得到答案.【詳解】命題為真命題:對任意實數(shù)都有恒成立或;命題為真命題:關于的方程有實數(shù)根;(1)命題為假命題,則實數(shù)取值范圍(2)由“”為真命題,且“”為假命題,則命題,一真一假.如果真,且假,有,且,則如果真,且假,有或,且,則綜上,實數(shù)的取值范圍為20、(1);(2)【解析】(1)求出導數(shù),令,得出變化情況表,即可得出單調(diào)區(qū)間;(2)分離參數(shù)得,構造函數(shù),利用導數(shù)討論單調(diào)性,根據(jù)與恰有兩個不同交點即可得出.【詳解】(1)當時,函數(shù),則令,得,,當x變化時,的變化情況如下表:1+00+↗極大值↘極小值↗∴在上單調(diào)遞減(2)依題意,即.則令,則當時,,故單調(diào)遞增,且;當時,,故單調(diào)遞減,且∴函數(shù)在處取得最大值故要使與恰有兩個不同的交點,只需∴實數(shù)a的取值范圍是【點睛】關鍵點睛:本題考查根據(jù)方程根的個數(shù)求參數(shù),解題的關鍵是參數(shù)分離,構造函數(shù)利用導數(shù)討論單調(diào)性,根據(jù)函數(shù)交點個數(shù)判斷.21、(1)答案見解析(2)0(3)560【解析】(1)選擇①,由,得,選擇②,由,得;(2)利用賦值法可求解;(3)分兩個部分求解后再求和即可.【小問1詳解】選擇①,因為,解得,所以展開式中二項式系數(shù)最大的項為選擇②,因為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論