版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆上海市寶山區(qū)上海大學附中高二上數(shù)學期末質量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖是正方體的平面展開圖,在這個正方體中①與平行;②與是異面直線;③與成60°角;④與是異面直線以上四個結論中,正確結論的序號是A.①②③ B.②④C.③④ D.②③④2.已知方程表示焦點在軸上的橢圓,則實數(shù)的取值范圍是()A. B.C. D.3.已知圓柱的表面積為定值,當圓柱的容積最大時,圓柱的高的值為()A.1 B.C. D.24.均勻壓縮是物理學一種常見現(xiàn)象.在平面直角坐標系中曲線均勻壓縮,可用曲線上點的坐標來描述.設曲線上任意一點,若將曲線縱向均勻壓縮至原來的一半,則點的對應點為.同理,若將曲線橫向均勻壓縮至原來的一半,則曲線上點的對應點為.若將單位圓先橫向均勻壓縮至原來的一半,再縱向均勻壓縮至原來的,得到的曲線方程為()A. B.C. D.5.執(zhí)行如圖所示的程序框圖,若輸入的的值為3,則輸出的的值為()A.3 B.6C.9 D.126.已知函數(shù)的導函數(shù)滿足,則()A. B.C.3 D.47.若雙曲線的一條漸近線方程為.則()A. B.C.2 D.48.命題“若,則”的逆命題、否命題、逆否命題中是真命題的個數(shù)為()A.0個 B.1個C.2個 D.3個9.若點P在曲線上運動,則點P到直線的距離的最大值為()A. B.2C. D.410.用斜二測畫法畫出邊長為2的正方形的直觀圖,則直觀圖的面積為()A. B.C.4 D.11.函數(shù)y=的最大值為Ae-1 B.eC.e2 D.12.2021年4月29日,中國空間站天和核心艙發(fā)射升空,這標志著中國空間站在軌組裝建造全面展開,我國載人航天工程“三步走”戰(zhàn)略成功邁出第三步.到今天,天和核心艙在軌已經九個多月.在這段時間里,空間站關鍵技術驗證階段完成了5次發(fā)射、4次航天員太空出艙、1次載人返回、1次太空授課等任務.一般來說,航天器繞地球運行的軌道近似看作為橢圓,其中地球的球心是這個橢圓的一個焦點,我們把橢圓軌道上距地心最近(遠)的一點稱作近(遠)地點,近(遠)地點與地球表面的距離稱為近(遠)地點高度.已知天和核心艙在一個橢圓軌道上飛行,它的近地點高度大約351km,遠地點高度大約385km,地球半徑約6400km,則該軌道的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線恒過定點,則定點坐標為________14.《九章算術》中的“商功”篇主要講述了以立體幾何為主的各種形體體積的計算,其中塹堵是指底面為直角三角形的直棱柱.如圖,在塹堵,中,M是的中點,,,,若,則_________15.直線與曲線有且僅有一個公共點.則b的取值范圍是__________16.若函數(shù)在區(qū)間上單調遞減,則實數(shù)的取值范圍是________;三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓:和圓外一點,過點作圓的切線,切線長為.(1)求圓的標準方程;(2)若圓:,求證:圓和圓相交,并求出兩圓的公共弦長.18.(12分)已知等差數(shù)列的前項和滿足,.(1)求的通項公式;(2)求數(shù)列的前項和.19.(12分)已知為各項均為正數(shù)的等比數(shù)列,且,(1)求數(shù)列的通項公式;(2)令,求數(shù)列前n項和20.(12分)已知拋物線的頂點在坐標原點,對稱軸為軸,焦點為,拋物線上一點的橫坐標為2,且(1)求拋物線的方程;(2)過點作直線交拋物線于兩點,設,判斷是否為定值?若是,求出該定值;若不是,說明理由.21.(12分)如圖,在平面直角坐標系中,點,,(1)求直線BC的方程;(2)記的外接圓為圓M,若直線OC被圓M截得的弦長為4,求點C的坐標22.(10分)已知直線l經過直線,的交點M(1)若直線l與直線平行,求直線l的方程;(2)若直線l與x軸,y軸分別交于A,兩點,且M為線段AB的中點,求的面積(其中O為坐標原點)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)平面展開圖可得原正方體,根據(jù)各點的分布逐項判斷可得正確的選項.【詳解】由平面展開圖可得原正方體如圖所示:由圖可得:為異面直線,與不是異面直線,是異面直線,故①②錯誤,④正確.連接,則為等邊三角形,而,故或其補角為與所成的角,因為,故與所成的角為,故③正確.綜上,正確命題的序號為:③④.故選:C.【點睛】本題考查正方體的平面展開圖,注意展開圖中的點與正方體中的頂點的對應關系,本題屬于容易題.2、D【解析】根據(jù)已知條件可得出關于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【詳解】因為方程表示焦點在軸上的橢圓,則,解得.故選:D.3、B【解析】設圓柱的底面半徑為,則圓柱底,圓柱側,則可得,則圓柱的體積為,利用導數(shù)求出最大值,確定值.【詳解】設圓柱的底面半徑為,則圓柱底,圓柱側,∴,∴,則圓柱的體積,∴,由得,由得,∴當時,取極大值,也是最大值,即故選:B【點睛】本題主要考查了圓柱表面積和體積的計算,考查了導數(shù)的實際應用,考查了學生的應用意識.4、C【解析】設單位圓上一點為,經過題設變換后坐標為,則,代入圓的方程即可得曲線方程.【詳解】由題設,單位圓上一點坐標為,經過橫向均勻壓縮至原來的一半,縱向均勻壓縮至原來的,得到對應坐標為,∴,則,故中,可得:.故選:C.5、A【解析】模擬執(zhí)行程序框圖,根據(jù)輸入數(shù)據(jù),即可求得輸出數(shù)據(jù).【詳解】當時,不滿足,故,即輸出的的值為.故選:.6、C【解析】先對函數(shù)求導,再由,可求出的關系式,然后求【詳解】由,得,因為,所以,所以,故選:C7、C【解析】求出漸近線方程為,列出方程求出.【詳解】雙曲線的漸近線方程為,因為,所以,所以.故選:C8、B【解析】先判斷出原命題和逆命題的真假,進而根據(jù)互為逆否的兩個命題同真或同假最終得到答案.【詳解】“若a=0,則ab=0”,命題為真,則其逆否命題也為真;逆命題為:“若ab=0,則a=0”,顯然a=1,b=0時滿足ab=0,但a≠0,即逆命題為假,則否命題也為假.故選:B.9、A【解析】由方程確定曲線的形狀,然后轉化為求圓上的點到直線距離的最大值【詳解】由曲線方程為知曲線關于軸成軸對稱,關于原點成中心對稱圖形,在第一象限內,方程化為,即,在第一象限內,曲線是為圓心,為半徑的圓在第一象限的圓?。ê鴺溯S上的點),實際上整個曲線就是這段圓弧及其關于坐標軸.原點對稱的圖形加上原點,點到直線的距離為,所以所求最大值為故選:A10、A【解析】畫出直觀圖,求出底和高,進而求出面積.【詳解】如圖,,,,過點C作CD⊥x軸于點D,則,所以直觀圖是底為2、高為的平行四邊形,所以面積為.故選:A.11、A【解析】,所以函數(shù)在上遞增,在上遞減,所以函數(shù)的最大值為時,y==故選A點睛:研究函數(shù)最值主要根據(jù)導數(shù)研究函數(shù)的單調性,找到最值,分式求導公式要記熟12、A【解析】根據(jù)遠地點和近地點,求出軌道即橢圓的半長軸和半焦距,即可求得答案.【詳解】設橢圓的半長軸為a,半焦距為c.則根據(jù)題意得;解得,故該軌道即橢圓的離心率為,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】解方程組可求得定點坐標.【詳解】直線方程可化為,由,可得.故直線恒過定點.故答案為:.14、【解析】建立空間直角坐標系,利用空間向量可以解決問題.【詳解】設,如下圖所示,建立空間直角坐標系,,,,,,則所以又因為所以故答案為:15、或.【解析】根據(jù)曲線方程得曲線的軌跡是個半圓,數(shù)形結合分析得兩種情況:(1)直線與半圓相切有一個交點;(2)直線與半圓相交于一個點,綜合兩種情況可得答案.【詳解】由曲線,可得,表示以原點為圓心,半徑為的右半圓,是傾斜角為的直線與曲線有且只有一個公共點有兩種情況:(1)直線與半圓相切,根據(jù),所以,結合圖像可得;(2)直線與半圓的上半部分相交于一個交點,由圖可知.故答案為:或.【點睛】方法點睛:處理直線與圓位置關系時,若兩方程已知或圓心到直線的距離易表達,則用幾何法;若方程中含有參數(shù),或圓心到直線的距離的表達較繁瑣,則用代數(shù)法;如果或有限制,需要數(shù)形結合進行分析.16、【解析】函數(shù),又函數(shù)在區(qū)間上單調遞減∴在區(qū)間上恒成立即,解得:,當時,經檢驗適合題意故答案為【點睛】f(x)為增函數(shù)的充要條件是對任意的x∈(a,b)都有f′(x)≥0且在(a,b)內的任一非空子區(qū)間上f′(x)≠0.應注意此時式子中的等號不能省略,否則漏解三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析,公共弦長為【解析】(1)根據(jù)切線長公式計算即可得到,然后代入可得圓的方程.(2)聯(lián)立兩圓的方程作差可得直線的方程為,然后利用圓的弦長公式計算即可.【小問1詳解】圓的標準方程為,所以圓心為,半徑.由勾股定理可得,解得.所以圓的標準方程為.【小問2詳解】由題意得圓的圓心,半徑,圓的圓心,半徑,因為,,所以圓和圓相交.設兩圓相交于,兩點,則兩圓的方程相減得直線的方程為,圓心到直線的距離.所以,所以兩圓的公共弦長為.18、(1);(2).【解析】(1)由,,可得求出,從而可得的通項公式;(2)由(1)可得,從而可得,然后利用裂項相消求和法可求得【詳解】解:(1)設等差數(shù)列的公差為,因為,.所以,化簡得,解得,所以,(2)由(1)可知,所以,所以【點睛】此題考查等差數(shù)列前項和的基本量計算,考查裂項相消求和法的應用,考查計算能力,屬于基礎題19、(1)(2)【解析】(1)利用基本量法,求出首項和公比,即可求解.(2)利用錯位相減法,即可求解.【小問1詳解】設等比數(shù)列公比為【小問2詳解】20、(1)(2)是,0【解析】(1)根據(jù)題意,設拋物線的方程為:,則,,進而根據(jù)得,進而得答案;(2)直線的方程為,進而聯(lián)立方程,結合韋達定理與向量數(shù)量積運算化簡整理即可得答案.【小問1詳解】解:由題意,設拋物線的方程為:,所以點的坐標為,點的坐標為,因為,所以,即,解得.所以拋物線的方程為:【小問2詳解】解:設直線的方程為,則聯(lián)立方程得,所以,,因為,所以.所以為定值.21、(1);(2).【解析】(1)延長CB交x軸于點N,根據(jù)給定條件求出即可計算作答.(2)利用待定系數(shù)法求出圓M的方程,再由給定弦長確定C點位置,推理計算得解.【小問1詳解】延長CB交x軸于點N,如圖,因,則,又,則有,又,于是得,則直線BC的傾斜角為120°,直線BC的斜率,因此,,即所以直線BC的方程為.【小問2詳解】依題意,設圓M的方程為,由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第一單元第2課+物聯(lián)網終端設備+課件+2025-2026學年清華大學版B版初中信息科技八年級上冊
- 《GB-T 39561.7-2020數(shù)控裝備互聯(lián)互通及互操作 第7部分:工業(yè)機器人測試與評價》專題研究報告
- 《GBT 21870-2008天然膠乳醫(yī)用手套水抽提蛋白質的測定 改進Lowry法》專題研究報告
- 道路交通安全演講課件
- 2026年海南三亞市高職單招英語考試題庫(附含答案)
- 重陽節(jié)文化活動方案
- 道口安全教育培訓計劃課件
- 2023美國胸外科醫(yī)師學會心房顫動外科治療指南解讀課件
- 三年(2023-2025)湖北中考英語真題分類匯編:專題01 完形填空(解析版)
- 邊檢站消防安全培訓總結課件
- 頂管施工技術培訓
- 《JJG 1081.2-2024鐵路機車車輛輪徑量具檢定規(guī)程第2部分:輪徑測量器》 解讀
- YY/T 1488-2025中醫(yī)器械舌象信息采集設備
- 2024人教版八年級生物上冊全冊教案
- 2025年春新人教版英語七年級下冊全冊教學課件
- 2025年上海城投集團社會招聘模擬試卷附答案詳解(黃金題型)
- 供電公司一把手講安全課
- 解讀手術室護理實踐指南
- 管道焊接工藝規(guī)程
- 2026屆遼寧省沈陽134中學化學九上期末調研試題含解析
- 自來水公司安全培訓課件
評論
0/150
提交評論