版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2026屆山東省天成大聯(lián)考數(shù)學高二上期末學業(yè)質(zhì)量監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在四棱錐中,底面是正方形,為的中點,若,則()A. B.C. D.2.已知圓,則圓C關于直線對稱的圓的方程為()A. B.C. D.3.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.設是雙曲線的一個焦點,,是的兩個頂點,上存在一點,使得與以為直徑的圓相切于,且是線段的中點,則的漸近線方程為A. B.C. D.5.經(jīng)過點且與直線垂直的直線方程為()A. B.C. D.6.已知角的頂點與坐標原點重合,始邊與x軸的非負半軸重合,角終邊上有一點(1,2),為銳角,且,則()A.-18 B.-6C. D.7.已知的周長為,頂點、的坐標分別為、,則點的軌跡方程為()A. B.C. D.8.已知正三棱柱中,,點為中點,則異面直線與所成角的余弦值為()A. B.C. D.9.過點且平行于直線的直線方程為()A. B.C. D.10.已知兩個向量,若,則的值為()A. B.C.2 D.811.設為坐標原點,直線與雙曲線的兩條漸近線分別交于兩點,若的面積為8,則的焦距的最小值為()A.4 B.8C.16 D.3212.在四棱錐中,底面為平行四邊形,為邊的中點,為邊上的一列點,連接,交于,且,其中數(shù)列的首項,則()A. B.為等比數(shù)列C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點到準線的距離為,則拋物線的標準方程為___________.(寫出一個即可)14.已知,動點滿足,則點的軌跡方程為___________.15.已知平面的法向量為,平面的法向量為,若,則實數(shù)______16.如圖,四邊形和均為正方形,它們所在的平面互相垂直,動點在線段上,、分別為、的中點.設異面直線與所成的角為,則的最大值為____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)判斷的單調(diào)性.(2)證明:.18.(12分)已知數(shù)列的前n項和為,滿足,(1)求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;(2)設,為數(shù)列的前n項和,①求;②若不等式對任意的正整數(shù)n恒成立,求實數(shù)的取值范圍19.(12分)如圖,在四棱錐中,平面,底面是直角梯形,其中,,,,為棱上的點,且.(1)求證:平面;(2)求二面角的正弦值;(3)設為棱上的點(不與,重合),且直線與平面所成角的正弦值為,求的值.20.(12分)已知的內(nèi)角A,B,C所對的邊分別為a,b,c,且(1)求;(2)若,求的面積的最大值21.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,平面ABCD,,.(1)求點B到平面PCD的距離;(2)求二面角的平面角的余弦值.22.(10分)已知等差數(shù)列滿足:,,數(shù)列的前n項和為(1)求及;(2)設是首項為1,公比為3的等比數(shù)列,求數(shù)列的前項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由為的中點,根據(jù)向量的運算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點,且,根據(jù)向量的運算法則,可得.故選:C.2、B【解析】求得圓的圓心關于直線的對稱點,由此求得對稱圓的方程.【詳解】設圓的圓心關于直線的對稱點為,則,所以對稱圓的方程為.故選:B3、B【解析】根據(jù)充分條件和必要條件的概念即可判斷.【詳解】∵,∴“”是“”的必要不充分條件.故選:B.4、C【解析】根據(jù)圖形的幾何特性轉(zhuǎn)化成雙曲線的之間的關系求解.【詳解】設另一焦點為,連接,由于是圓的切線,則,且,又是的中點,則是的中位線,則,且,由雙曲線定義可知,由勾股定理知,,,即,漸近線方程為,所以漸近線方程為故選C.【點睛】本題考查雙曲線的簡單的幾何性質(zhì),屬于中檔題.5、A【解析】根據(jù)點斜式求得正確答案.【詳解】直線的斜率為,經(jīng)過點且與直線垂直的直線方程為,即.故選:A6、A【解析】由終邊上的點可得,由同角三角函數(shù)的平方、商數(shù)關系有,再應用差角、倍角正切公式即可求.【詳解】由題設,,,則,又,,所以.故選:A7、D【解析】分析可知點的軌跡是除去長軸端點的橢圓,求出、的值,結(jié)合橢圓焦點的位置可得出頂點的軌跡方程.【詳解】由已知可得,,且、、三點不共線,故點的軌跡是以、為焦點,且除去長軸端點的橢圓,由已知可得,得,,則,因此,點的軌跡方程為.故選:D.8、A【解析】根據(jù)異面直線所成角的定義,取中點為,則為異面直線和所成角或其補角,再解三角形即可求出【詳解】如圖所示:設中點為,則在三角形中,為中點,為中位線,所以有,,所以為異面直線和所成角或其補角,在三角形中,,所以由余弦定理有,故選:A.9、A【解析】設直線的方程為,代入點的坐標即得解.【詳解】解:設直線的方程為,把點坐標代入直線方程得.所以所求的直線方程為.故選:A10、B【解析】直接利用空間向量垂直的坐標運算計算即可.【詳解】因為,所以,即,解得.故選:B11、B【解析】因為,可得雙曲線的漸近線方程是,與直線聯(lián)立方程求得,兩點坐標,即可求得,根據(jù)的面積為,可得值,根據(jù),結(jié)合均值不等式,即可求得答案.【詳解】雙曲線的漸近線方程是直線與雙曲線的兩條漸近線分別交于,兩點不妨設為在第一象限,在第四象限聯(lián)立,解得故聯(lián)立,解得故面積為:雙曲線其焦距為當且僅當取等號的焦距的最小值:故選:B.【點睛】本題主要考查了求雙曲線焦距的最值問題,解題關鍵是掌握雙曲線漸近線的定義和均值不等式求最值方法,在使用均值不等式求最值時,要檢驗等號是否成立,考查了分析能力和計算能力,屬于中檔題.12、A【解析】由得,為邊的中點得,設,所以,根據(jù)向量相等可判斷A選項;由得是公比為的等比數(shù)列,可判斷B選項;代入可判斷C選項;當時可判斷D選項.【詳解】由得,因為為邊的中點,所以,所以設,所以,所以,當時,A選項正確;,由得,是公比為的等比數(shù)列,所以,所以,所以,不是常數(shù),故B選項錯誤;所以,由得,故C選項錯誤;當時,,所以,此時為的中點,與重合,即,,故D錯誤.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、(答案不唯一)【解析】設出拋物線方程,根據(jù)題意即可得出.【詳解】設拋物線的方程為,根據(jù)題意可得,所以拋物線的標準方程為.故答案為:(答案不唯一).14、【解析】表示出、,根據(jù)題意,列出等式,化簡整理即可得答案.【詳解】,由題意得,所以整理可得,即.故答案為:.15、【解析】由題設可得,結(jié)合向量共線的坐標表示求參數(shù)即可.【詳解】由題設,平面與平面的法向量共線,∴,則,即,解得.故答案為:.16、【解析】如圖所示,建立空間直角坐標系,設,,,,,由向量法可得,令,,,利用導數(shù)研究函數(shù)的單調(diào)性即可求得的最大值,從而可得答案【詳解】解:由題意,根據(jù)已知條件,直線AB,AD,AQ兩兩互相垂直,所以建立如圖所示空間直角坐標系不妨設,則,0,,,0,,,1,,設,,,,,,,,,,,令,,則,函數(shù)在上單調(diào)遞減,時,函數(shù)取得最大值,的最大值為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)在R上單調(diào)遞增,無單調(diào)遞減區(qū)間;(2)證明見解析.【解析】(1)對求導,令并應用導數(shù)求最值,確定的符號,即可知的單調(diào)性.(2)利用作差法轉(zhuǎn)化證明的結(jié)論,令結(jié)合導數(shù)研究其單調(diào)性,最后討論的大小關系判斷的符號即可證結(jié)論.【小問1詳解】由題設,.令,則.當時,單調(diào)遞減;當時,單調(diào)遞增故,即,則在R上單調(diào)遞增,無單調(diào)遞減區(qū)間.【小問2詳解】.令,則.令,則,顯然在R上單調(diào)遞增,且,∴當時,單調(diào)遞減;當時,單調(diào)遞增.故,即,在R上單調(diào)遞增,又,∴當時,,;當時,,;當時,.綜上,,即.【點睛】關鍵點點睛:第二問,應用作差法有,構(gòu)造中間函數(shù)并應用導數(shù)研究單調(diào)性,最后討論的大小證結(jié)論.18、(1)證明見解析,(2)①;②【解析】(1)由得到,即可得到,從而得證,即可求出的通項公式,從而得到的通項公式;(2)①由(1)可得,再利用錯位相減法求和即可;②利用作差法證明的單調(diào)性,即可得到,即可得到,再解一元二次不等式即可;【小問1詳解】證明:由,,當時,可得,解得,當時,,又,兩式相減得,所以,所以,即,則數(shù)列是首項為,公比為的等比數(shù)列;所以,所以【小問2詳解】解:①由(1)可得,所以,所以,所以,所以整理得②由①知,所以,即單調(diào)遞增,所以,因為不等式對任意的正整數(shù)n恒成立,所以,即,解得或,即19、(1)證明見解析;(2);(3).【解析】(1)由已知證得,,,以為坐標原點,建立如圖所示的空間直角坐標系,根據(jù)向量垂直的坐標表示和線面垂直的判定定理可得證;(2)根據(jù)二面角的空間向量求解方法可得答案;(3)設,表示點Q,再利用線面角的空間向量求解方法,建立方程解得,可得答案.【詳解】(1)因為平面,平面,平面,所以,,又因為,則以為坐標原點,建立如圖所示的空間直角坐標系,由已知可得,,,,,,所以,,,因為,,所以,,又,平面,平面,所以平面.(2)由(1)可知平面,可作為平面的法向量,設平面的法向量因為,.所以,即,不妨設,得.,又由圖示知二面角為銳角,所以二面角的正弦值為.(3)設,即,,所以,即,因為直線與平面所成角的正弦值為,所以,即,解得,即.【點睛】本題考查利用空間向量求線面垂直、線面角、二面角的求法,向量法求二面角的步驟:建、設、求、算、?。?、建:建立空間直角坐標系,以三條互相垂直的垂線的交點為原點;2、設:設所需點的坐標,并得出所需向量的坐標;3、求:求出兩個面的法向量;4、算:運用向量的數(shù)量積運算,求兩個法向量的夾角的余弦值;5、?。焊鶕?jù)二面角的范圍和圖示得出的二面角是銳角還是鈍角,再取值.20、(1)(2)【解析】(1)由正弦定理將邊化為角,結(jié)合三角函數(shù)的兩角和的正弦公式,可求得答案;(2)由余弦定理結(jié)合基本不等式可求得,再利用三角形面積公式求得答案.【小問1詳解】由正弦定理及,得,∵∴,∵,∴【小問2詳解】由余弦定理,∴,即,當且僅當時取等號,∴,當且僅當時等號成立,∴的面積的最大值為21、(1)(2)【解析】(1)建立空間直角坐標系,用點到面的距離公式即可算出答案;(2)先求出兩個面的法向量,然后用二面角公式即可.【小問1詳解】∵平面平面∴PB⊥AB,PB⊥BC,又兩兩互相垂直,所以,以點為坐標原點,分別為軸,軸,軸建立如圖所示的空間直角坐標系,D(3,6,0),A(0,6,0)設平面的一個法向量所以n?PD令,可得記點到平面的距離為,則d=【小問2詳解】由(1)可知平面的一個法向量為平面的一個法向量為設二面角的平面角為由圖可知,22、(1);(2)【解析】(1)先根據(jù)已知求出,再求及.(2)先根據(jù)已知得到,再利用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 快遞職業(yè)衛(wèi)生制度規(guī)范
- 機要崗位值班制度規(guī)范
- 文體秧歌隊伍制度規(guī)范
- 液化氣罐管理制度規(guī)范
- 電視新聞用字規(guī)范制度
- 規(guī)范投資評審管理制度
- 藥材烘干制度規(guī)范要求
- 測量標準規(guī)范制度
- 房子轉(zhuǎn)租續(xù)簽合同范本
- 工業(yè)管道采購合同范本
- 1輸變電工程施工質(zhì)量驗收統(tǒng)一表式(線路工程)-2024年版
- 陜西省建筑場地墓坑探查與處理技術(shù)規(guī)程
- 2022-2023學年四川省樂山市市中區(qū)外研版(三起)六年級上冊期末測試英語試卷(含聽力音頻)
- 滕州菜煎餅創(chuàng)新創(chuàng)業(yè)計劃書
- 2024北京朝陽區(qū)初一(上)期末道法試卷及答案
- 假體隆胸后查房課件
- 送貨單格式模板
- GB/T 42430-2023血液、尿液中乙醇、甲醇、正丙醇、丙酮、異丙醇和正丁醇檢驗
- 關于地方儲備糧輪換業(yè)務會計核算處理辦法的探討
- 上海農(nóng)貿(mào)場病媒生物防制工作標準
- YY 0334-2002硅橡膠外科植入物通用要求
評論
0/150
提交評論