版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆貴州省平壩縣新啟航教育高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若“”是“”的充分不必要條件,則實(shí)數(shù)a的取值范圍為A. B.或C. D.2.如圖,在空間四邊形中,()A. B.C. D.3.若直線l的傾斜角是鈍角,則l的方程可能是()A. B.C. D.4.雙曲線型自然通風(fēng)塔外形是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所成的曲面,如圖所示,它的最小半徑為米,上口半徑為米,下口半徑為米,高為24米,則該雙曲線的離心率為()A.2 B.C. D.5.如圖,用隨機(jī)模擬方法近似估計(jì)在邊長(zhǎng)為e(e為自然對(duì)數(shù)的底數(shù))的正方形中陰影部分的面積,先產(chǎn)生兩組區(qū)間上的隨機(jī)數(shù)和,因此得到1000個(gè)點(diǎn)對(duì),再統(tǒng)計(jì)出落在該陰影部分內(nèi)的點(diǎn)數(shù)為260個(gè),則此陰影部分的面積約為()A.0.70 B.1.04C.1.86 D.1.926.命題“,均有”的否定為()A.,均有 B.,使得C.,使得 D.,均有7.拋物線的焦點(diǎn)到準(zhǔn)線的距離是A.2 B.4C. D.8.過(guò)拋物線C:y2=4x的焦點(diǎn)F分別作斜率為k1、k2的直線l1、l2,直線l1與C交于A、B兩點(diǎn),直線l2與C交于D、E兩點(diǎn),若|k1·k2|=2,則|AB|+|DE|的最小值為()A.10 B.12C.14 D.169.圓關(guān)于直線l:對(duì)稱的圓的方程為()A. B.C. D.10.為了解青少年視力情況,統(tǒng)計(jì)得到名青少年的視力測(cè)量值(五分記錄法)的莖葉圖,其中莖表示個(gè)位數(shù),葉表示十分位數(shù),則該組數(shù)據(jù)的中位數(shù)是()A. B.C. D.11.在空間直角坐標(biāo)系中,,,平面的一個(gè)法向量為,則平面與平面夾角的正弦值為()A. B.C. D.12.命題“?x∈[1,2],x2-a≤0”為真命題的一個(gè)充分不必要條件是()A.a≥4 B.a≤4C.a≥5 D.a≤5二、填空題:本題共4小題,每小題5分,共20分。13.在2021件產(chǎn)品中有10件次品,任意抽取3件,則抽到次品個(gè)數(shù)的數(shù)學(xué)期望的值是______.14.已知數(shù)列是等差數(shù)列,,公差,為其前n項(xiàng)和,滿足,則當(dāng)取得最大值時(shí),______15.已知橢圓方程為,左、右焦點(diǎn)分別為、,P為橢圓上的動(dòng)點(diǎn),若的最大值為,則橢圓的離心率為___________.16.設(shè),滿足約束條件,則的最大值是_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在中內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且(1)求角A(2)若,,求的面積18.(12分)已知點(diǎn),.(1)求以為直徑的圓的方程;(2)若直線被圓截得的弦長(zhǎng)為,求值19.(12分)設(shè)數(shù)列的前項(xiàng)和為,,且滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)證明:對(duì)一切正整數(shù),有.20.(12分)如圖所示,在四棱錐中,BC//平面PAD,,E是PD的中點(diǎn)(1)求證:CE//平面PAB;(2)若M是線段CE上一動(dòng)點(diǎn),則線段AD上是否存在點(diǎn),使MN//平面PAB?說(shuō)明理由21.(12分)已知數(shù)列的首項(xiàng),且滿足.(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的前n項(xiàng)和.22.(10分)求滿足下列條件的圓錐曲線的標(biāo)準(zhǔn)方程:(1)已知橢圓的焦點(diǎn)在x軸上且一個(gè)頂點(diǎn)為,離心率為;(2)求一個(gè)焦點(diǎn)為,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程;(3)拋物線,過(guò)其焦點(diǎn)斜率為1的直線交拋物線于A、B兩點(diǎn),且線段AB的中點(diǎn)的縱坐標(biāo)為2.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】“”是“”的充分不必要條件,結(jié)合集合的包含關(guān)系,即可求出的取值范圍.【詳解】∵“”是“”的充分不必要條件∴或∴故選:D.【點(diǎn)睛】本題考查充分必要條件,根據(jù)充要條件求解參數(shù)的范圍時(shí),可把充分條件、必要條件或充要條件轉(zhuǎn)化為集合間的關(guān)系,由此得到不等式(組)后再求范圍.解題時(shí)要注意,在利用兩個(gè)集合之間的關(guān)系求解參數(shù)的取值范圍時(shí),不等式是否能夠取等號(hào)決定端點(diǎn)值的取舍,處理不當(dāng)容易出現(xiàn)漏解或增解的現(xiàn)象.2、A【解析】利用空間向量加減法法則直接運(yùn)算即可.【詳解】根據(jù)向量的加法、減法法則得.故選:A.3、A【解析】根據(jù)直線方程,求得直線斜率,再根據(jù)傾斜角和斜率的關(guān)系,即可判斷和選擇.【詳解】若直線的傾斜角為,則,當(dāng)時(shí),為鈍角,當(dāng),,當(dāng),為銳角;當(dāng)不存在時(shí),傾斜角為,對(duì)A:,顯然傾斜角為鈍角;對(duì)B:,傾斜角為銳角;對(duì)C:,傾斜角為銳角;對(duì)D:不存在,此時(shí)傾斜角為直角.故選:A.4、A【解析】以的中點(diǎn)О為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,設(shè)雙曲線的方程為,設(shè),,代入雙曲線的方程,求得,得到,進(jìn)而求得雙曲線的離心率.【詳解】以的中點(diǎn)О為坐標(biāo)原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,則,設(shè)雙曲線的方程為,則,可設(shè),,又由,在雙曲線上,所以,解得,,即,所以該雙曲線的離心率為.故選:A.第II卷5、D【解析】根據(jù)幾何概型的概率公式即可直接求出答案.【詳解】易知,根據(jù)幾何概型的概率公式,得,所以.故選:D.6、C【解析】全稱命題的否定是特稱命題【詳解】根據(jù)全稱命題的否定是特稱命題,所以命題“,均有”的否定為“,使得”故選:C7、D【解析】因?yàn)閽佄锞€方程可化為,所以拋物線的焦點(diǎn)到準(zhǔn)線的距離是,故選D.考點(diǎn):1、拋物線的標(biāo)準(zhǔn)方程;2、拋物線的幾何性質(zhì).8、B【解析】設(shè)出l1的方程為,與拋物線聯(lián)立后得到兩根之和,兩根之積,用弦長(zhǎng)公式表達(dá)出,同理表達(dá)出,利用基本不等式求出的最小值.【詳解】拋物線C:y2=4x的焦點(diǎn)F為,直線l1的方程為,則聯(lián)立后得到,設(shè),,,則,同理設(shè)可得:,因?yàn)閨k1·k2|=2,所以,當(dāng)且僅當(dāng),即或時(shí),等號(hào)成立,故選:B9、A【解析】首先求出圓的圓心坐標(biāo)與半徑,再設(shè)圓心關(guān)于直線對(duì)稱的點(diǎn)的坐標(biāo)為,即可得到方程組,求出、,即可得到圓心坐標(biāo),從而求出對(duì)稱圓的方程;【詳解】解:圓的圓心為,半徑,設(shè)圓心關(guān)于直線對(duì)稱的點(diǎn)的坐標(biāo)為,則,解得,即圓關(guān)于直線對(duì)稱的圓的圓心為,半徑,所以對(duì)稱圓的方程為;故選:A10、B【解析】將樣本中的數(shù)據(jù)由小到大進(jìn)行排列,利用中位數(shù)的定義可得結(jié)果.【詳解】將樣本中的數(shù)據(jù)由小到大進(jìn)行排列,依次為:、、、、、、、、、,因此,這組數(shù)據(jù)的中位數(shù)為.故選:B.11、A【解析】根據(jù)給定條件求出平面的法向量,再借助空間向量夾角公式即可計(jì)算作答.【詳解】設(shè)平面的法向量為,則,令,得,令平面與平面夾角為,則,,所以平面與平面夾角的正弦值為.故選:A12、C【解析】先要找出命題為真命題的充要條件,從集合的角度充分不必要條件應(yīng)為的真子集,由選擇項(xiàng)不難得出答案【詳解】命題“?x∈[1,2],x2-a≤0”為真命題,可化為?x∈[1,2],恒成立即只需,即命題“?x∈[1,2],x2-a≤0”為真命題的的充要條件為,而要找的一個(gè)充分不必要條件即為集合的真子集,由選擇項(xiàng)可知C符合題意.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)抽到的次品的個(gè)數(shù)為,則,求出對(duì)應(yīng)的概率即得解.【詳解】解:設(shè)抽到的次品的個(gè)數(shù)為,則,所以所以抽到次品個(gè)數(shù)的數(shù)學(xué)期望的值是故答案為:14、9或10【解析】等差數(shù)列通項(xiàng)公式的使用.【詳解】數(shù)列是等差數(shù)列,且,得,得,則有,又因?yàn)?,公差,所以?0時(shí),取得最大值故答案為:9或1015、【解析】利用橢圓的定義結(jié)合余弦定理可求得,再利用公式可求得該橢圓的離心率的值.【詳解】由橢圓的定義可得,由余弦定理可得,因?yàn)榈淖畲笾禐椋瑒t,可得,因此,該橢圓的離心率為.故答案為:.16、5【解析】由題可知表示點(diǎn)與點(diǎn)連線的斜率,再畫出可行域結(jié)合圖像知知.【詳解】x,y滿足約束條件,滿足的可行域如圖:則的幾何意義是可行域內(nèi)的點(diǎn)與(﹣3,﹣2)連線的斜率,通過(guò)分析圖像得到當(dāng)經(jīng)過(guò)A時(shí),目標(biāo)函數(shù)取得最大值由可得A(﹣2,3),則的最大值是:故答案為5【點(diǎn)睛】(1)在平面直角坐標(biāo)系內(nèi)作出可行域(2)考慮目標(biāo)函數(shù)的幾何意義,將目標(biāo)函數(shù)進(jìn)行變形.常見的類型有截距型(型)、斜率型(型)和距離型(型)(3)確定最優(yōu)解:根據(jù)目標(biāo)函數(shù)的類型,并結(jié)合可行域確定最優(yōu)解(4)求最值:將最優(yōu)解代入目標(biāo)函數(shù)即可求出最大值或最小值三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)根據(jù)正弦定理,結(jié)合三角形內(nèi)角和定理、兩角和的正弦公式進(jìn)行求解即可;(2)根據(jù)余弦定理,結(jié)合三角形面積公式進(jìn)行求解即可.【小問(wèn)1詳解】,由正弦定理知,,即又,且.所以,由于.所以;【小問(wèn)2詳解】由余弦定理得:,又,所以所以.18、(1).(2)或【解析】(1)根據(jù)題意,有A、B的坐標(biāo)可得線段AB的中點(diǎn)即C的坐標(biāo),求出AB的長(zhǎng)即可得圓C的半徑,由圓的標(biāo)準(zhǔn)方程即可得答案;(2)根據(jù)題意,由直線與圓的位置關(guān)系可得點(diǎn)C到直線x﹣my+1=0的距離d,結(jié)合點(diǎn)到直線的距離公式可得,解可得m的值,即可得答案【詳解】(1)根據(jù)題意,點(diǎn),,則線段的中點(diǎn)為,即的坐標(biāo)為;圓是以線段為直徑的圓,則其半徑,圓的方程為.(2)根據(jù)題意,若直線被圓截得的弦長(zhǎng)為,則點(diǎn)到直線的距離,又由,則有,變形可得:,解可得或【點(diǎn)睛】本題考查直線與圓的位置關(guān)系以及弦長(zhǎng)的計(jì)算,涉及圓的標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題19、(1),;(2)證明見解析.【解析】(1)利用關(guān)系可得,根據(jù)等比數(shù)列的定義易知為等比數(shù)列,進(jìn)而寫出的通項(xiàng)公式;(2)由,將不等式左側(cè)放縮,即可證結(jié)論.【小問(wèn)1詳解】當(dāng)時(shí),,,兩式相減得:,整理可得:,而,所以是首項(xiàng)為2,公比為1的等比數(shù)列,故,即,.【小問(wèn)2詳解】,..20、(1)證明見解析;(2)存在,理由見解析.【解析】(1)為中點(diǎn),連接,由中位線、線面平行的性質(zhì)可得四邊形為平行四邊形,再根據(jù)線面平行的判定即可證結(jié)論;(2)取中點(diǎn)N,連接,,根據(jù)線面、面面平行的性質(zhì)定理和判斷定理即可判斷存在性【小問(wèn)1詳解】如下圖,若為中點(diǎn),連接,由E是PD的中點(diǎn),所以且,又BC//平面PAD,面,且面面,所以,且,所以四邊形為平行四邊形,故,而面,面,則面.小問(wèn)2詳解】取中點(diǎn)N,連接,,∵E,N分別為,的中點(diǎn),∴,∵平面,平面,∴平面,線段存在點(diǎn)N,使得平面,理由如下:由(1)知:平面,又,∴平面平面,又M是上的動(dòng)點(diǎn),平面,∴平面PAB,∴線段存在點(diǎn)N,使得MN∥平面21、(1)證明見解析;(2)當(dāng)為偶數(shù)時(shí),;當(dāng)為奇數(shù)時(shí),.【解析】(1)根據(jù)等比數(shù)列的定義進(jìn)行證明即可;(2)利用分組求和法,結(jié)合錯(cuò)位相減法進(jìn)行求解即可.【小問(wèn)1詳解】由題知:所以又因?yàn)樗运詳?shù)列為以-1為首項(xiàng),-1為公比的等比數(shù)列;【小問(wèn)2詳解】由(1)知:,所以,,記,所以,當(dāng)為偶數(shù)時(shí),;當(dāng)為奇數(shù)時(shí),;記兩式相減得:,所以,所以,當(dāng)偶數(shù)時(shí),;當(dāng)為奇數(shù)時(shí),.22、(1)(2)(3)【解析】(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為,根據(jù)題意,進(jìn)而結(jié)合求解即可得答案;(2)設(shè)雙曲線的方程為,進(jìn)而結(jié)合題意得,,再結(jié)合解方程即可得答案;、(3)根據(jù)題意設(shè)直線的方程
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年吉林水利電力職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能考試模擬測(cè)試卷附答案
- 2026年濰坊環(huán)境工程職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能考試模擬測(cè)試卷及答案1套
- 2026年寧波城市職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)傾向性測(cè)試題庫(kù)附答案
- 2026年娛樂(lè)測(cè)試心理考試題庫(kù)及答案1套
- 2026年山西專科單招試題附答案
- 2026年廣州城市職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能考試模擬測(cè)試卷附答案
- 2026廣西賀州職業(yè)技術(shù)學(xué)院公開招聘教師及輔導(dǎo)員43人筆試備考題庫(kù)及答案解析
- 2026年心理教育期末測(cè)試題有答案
- 2025年杭州蕭山醫(yī)院醫(yī)共體總院招聘編外工作人員10人考試備考題庫(kù)附答案
- 2026福汽集團(tuán)校園招聘279人筆試參考題庫(kù)及答案解析
- 2026年湖南民族職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)筆試備考試題附答案詳解
- 全球AI應(yīng)用平臺(tái)市場(chǎng)全景圖與趨勢(shì)洞察報(bào)告
- 2026.05.01施行的中華人民共和國(guó)漁業(yè)法(2025修訂)課件
- 維持性血液透析患者管理
- 2023-2024學(xué)年上海市閔行區(qū)四上數(shù)學(xué)期末綜合測(cè)試試題含答案
- 中鋁中州礦業(yè)有限公司禹州市方山鋁土礦礦山地質(zhì)環(huán)境保護(hù)和土地復(fù)墾方案
- 解除勞動(dòng)合同證明電子版(6篇)
- 呼吸科規(guī)培疑難病例討論
- 基于PLC控制的小型鉆床機(jī)械設(shè)計(jì)
- DB11T 290-2005山區(qū)生態(tài)公益林撫育技術(shù)規(guī)程
- 開放大學(xué)(原電視大學(xué))行政管理實(shí)務(wù)期末復(fù)習(xí)資料所有單
評(píng)論
0/150
提交評(píng)論