版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
漢中市重點中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等差數(shù)列x,,,…的第四項為()A.5 B.6C.7 D.82.函數(shù)在的圖象大致為()A. B.C D.3.美學(xué)四大構(gòu)件是:史詩、音樂、造型(繪畫、建筑等)和數(shù)學(xué).素描是學(xué)習(xí)繪畫的必要一步,它包括明暗素描和結(jié)構(gòu)素描,而學(xué)習(xí)幾何體結(jié)構(gòu)素描是學(xué)習(xí)素描最重要的一步.某同學(xué)在畫切面圓柱體(用與圓柱底面不平行的平面去截圓柱,底面與截面之間的部分叫做切面圓柱體,原圓柱的母線被截面所截剩余的部分稱為切面圓柱體的母線)的過程中,發(fā)現(xiàn)“切面”是一個橢圓,若切面圓柱體的最長母線與最短母線所確定的平面截切面圓柱體得到的截面圖形是有一個底角為60度的直角梯形,則該橢圓的離心率為()A. B.C. D.4.若、且,則下列式子一定成立的是()A. B.C. D.5.已知兩條平行直線:與:間的距離為3,則()A.25或-5 B.25C.5 D.21或-96.已知橢圓C:的左、右焦點分別為F1,F(xiàn)2,過點F1作直線l交橢圓C于M,N兩點,則的周長為()A.3 B.4C.6 D.87.拋物線的準(zhǔn)線方程是A. B.C. D.8.設(shè)數(shù)列的前項和為,當(dāng)時,,,成等差數(shù)列,若,且,則的最大值為()A. B.C. D.9.已知公比不為1的等比數(shù)列,其前n項和為,,則()A.2 B.4C.5 D.2510.某企業(yè)為節(jié)能減排,用萬元購進(jìn)一臺新設(shè)備用于生產(chǎn).第一年需運營費用萬元,從第二年起,每年運營費用均比上一年增加萬元,該設(shè)備每年生產(chǎn)的收入均為萬元.設(shè)該設(shè)備使用了年后,年平均盈利額達(dá)到最大值(盈利額等于收入減去成本),則等于()A. B.C. D.11.已知拋物線的焦點與橢圓的右焦點重合,則拋物線的準(zhǔn)線方程為()A. B.C. D.12.等比數(shù)列{}中,已知=8,+=4,則的值為()A.1 B.2C.3 D.5二、填空題:本題共4小題,每小題5分,共20分。13.在1和9之間插入三個數(shù),使這五個數(shù)成等比數(shù)列,則中間三個數(shù)的積等于________.14.一個質(zhì)地均勻的正四面體,其四個面涂有不同的顏色,拋擲這個正四面體一次,觀察它與地面接觸的顏色得到樣本空間{紅,黃,藍(lán),綠},設(shè)事件{紅,黃},事件{紅,藍(lán)},事件{黃,綠},則下列判斷:①E與F是互斥事件;②E與F是獨立事件;③F與G是對立事件;④F與G是獨立事件.其中正確判斷的序號是______(請寫出所有正確判斷的序號)15.若直線與平行,則實數(shù)________.16.如圖,在矩形中,,,將沿BD所在的直線進(jìn)行翻折,得到空間四邊形.給出下面三個結(jié)論:①在翻折過程中,存在某個位置,使得;②在翻折過程中,三棱錐的體積不大于;③在翻折過程中,存在某個位置,使得異面直線與所成角45°.其中所有正確結(jié)論的序號是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)新型冠狀病毒的傳染主要是人與人之間進(jìn)行傳播,感染人群年齡大多數(shù)是歲以上人群.該病毒進(jìn)入人體后有潛伏期.潛伏期是指病原體侵入人體至最早出現(xiàn)臨床癥狀的這段時間.潛伏期越長,感染到他人的可能性越高.現(xiàn)對個病例的潛伏期(單位:天)進(jìn)行調(diào)查,統(tǒng)計發(fā)現(xiàn)潛伏期平均數(shù)為,方差為.如果認(rèn)為超過天的潛伏期屬于“長潛伏期”,按照年齡統(tǒng)計樣本,得到下面的列聯(lián)表:年齡/人數(shù)長期潛伏非長期潛伏50歲以上6022050歲及50歲以下4080(1)是否有的把握認(rèn)為“長期潛伏”與年齡有關(guān);(2)假設(shè)潛伏期服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.(i)現(xiàn)在很多省市對入境旅客一律要求隔離天,請用概率知識解釋其合理性;(ii)以題目中的樣本頻率估計概率,設(shè)個病例中恰有個屬于“長期潛伏”的概率是,當(dāng)為何值時,取得最大值.附:0.10.050.0102.7063.8416.635若,則,,.18.(12分)如圖,三棱柱中,底面邊長和側(cè)棱長都等于1,(1)設(shè),,,用向量表示,并求出的長度;(2)求異面直線與所成角的余弦值19.(12分)在平面直角坐標(biāo)系中,已知點,,點滿足,記點的軌跡為.(1)求的方程;(2)已知,是經(jīng)過圓上一點且與相切的兩條直線,斜率分別為,,直線的斜率為,求證:為定值.20.(12分)已知直線和的交點為(1)若直線經(jīng)過點且與直線平行,求直線的方程;(2)若直線經(jīng)過點且與兩坐標(biāo)軸圍成的三角形的面積為,求直線的方程21.(12分)如圖,已知正方體的棱長為2,,,分別為,,的中點(1)求直線與直線所成角余弦值;(2)求點到平面的距離22.(10分)阿基米德(公元前287年---公元前212年,古希臘)不僅是著名的哲學(xué)家、物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.在平面直角坐標(biāo)系中,橢圓的面積等于,且橢圓的焦距為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)點是軸上的定點,直線與橢圓交于不同的兩點,已知A關(guān)于軸的對稱點為,點關(guān)于原點的對稱點為,已知三點共線,試探究直線是否過定點.若過定點,求出定點坐標(biāo);若不過定點,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)等差數(shù)列的定義求出x,求出公差,即可求出第四項.【詳解】由題可知,等差數(shù)列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四項為-1+(4-1)×2=5.故選:A.2、D【解析】函數(shù)|在[–2,2]上是偶函數(shù),其圖象關(guān)于軸對稱,因為,所以排除選項;當(dāng)時,有一零點,設(shè)為,當(dāng)時,為減函數(shù),當(dāng)時,為增函數(shù)故選:D.3、A【解析】設(shè)圓柱的底面半徑為,由題意知,,橢圓的長軸長,短軸長為,可以求出的值,即可得離心率.【詳解】設(shè)圓柱的底面半徑為,依題意知,最長母線與最短母線所在截面如圖所示從而因此在橢圓中長軸長,短軸長,,故選:A【點睛】本題主要考查了橢圓的定義和橢圓離心力的求解,屬于基礎(chǔ)題.4、B【解析】構(gòu)造函數(shù),利用函數(shù)在上的單調(diào)性可判斷AB選項;構(gòu)造函數(shù),利用函數(shù)在上的單調(diào)性可判斷CD選項.【詳解】對于AB選項,構(gòu)造函數(shù),其中,則,所以,函數(shù)在上單調(diào)遞增,因為、且,則,即,A錯B對;對于CD選項,構(gòu)造函數(shù),其中,則.當(dāng)時,,此時函數(shù)單調(diào)遞減,當(dāng)時,,此時函數(shù)單調(diào)遞增,故函數(shù)在上不單調(diào),無法確定與的大小關(guān)系,故CD都錯.故選:B.5、A【解析】根據(jù)平行直線的性質(zhì),結(jié)合平行線間距離公式進(jìn)行求解即可.【詳解】因為直線:與:平行,所以有,因為兩條平行直線:與:間距離為3,所以,或,當(dāng)時,;當(dāng)時,,故選:A6、D【解析】由的周長為,結(jié)合橢圓的定義,即可求解.【詳解】由題意,橢圓,可得,即,如圖所示,根據(jù)橢圓的定義,可得的周長為故選:D.7、C【解析】根據(jù)拋物線的概念,可得準(zhǔn)線方程為8、A【解析】根據(jù)等差中項寫出式子,由遞推式及求和公式寫出和,進(jìn)而得出結(jié)果.【詳解】解:由,,成等差數(shù)列,可得,則,,,可得數(shù)列中,每隔兩項求和是首項為,公差為的等差數(shù)列.則,,則的最大值可能為.由,,可得.因為,,,即,所以,則,當(dāng)且僅當(dāng)時,,符合題意,故的最大值為.故選:A.【點睛】本題考查等差數(shù)列的性質(zhì)和遞推式的應(yīng)用,考查分析問題能力,屬于難題.9、B【解析】設(shè)等比數(shù)列的公比為,根據(jù)求得,從而可得出答案.【詳解】解:設(shè)等比數(shù)列的公比為,則,所以,則.故選:B.10、D【解析】設(shè)該設(shè)備第年的營運費為萬元,利用為等差數(shù)列可求年平均盈利額,利用基本不等式可求其最大值.【詳解】設(shè)該設(shè)備第年的營運費為萬元,則數(shù)列是以2為首項,2為公差的等差數(shù)列,則,則該設(shè)備使用年的營運費用總和為,設(shè)第n年的盈利總額為,則,故年平均盈利額為,因為,當(dāng)且僅當(dāng)時,等號成立,故當(dāng)時,年平均盈利額取得最大值4.故選:D.【點睛】本題考查等差數(shù)列在實際問題中的應(yīng)用,注意根據(jù)題設(shè)條件概括出數(shù)列的類型,另外用基本不等式求最值時注意檢驗等號成立的條件.11、C【解析】先求出橢圓的右焦點,從而可求拋物線的準(zhǔn)線方程.【詳解】,橢圓右焦點坐標(biāo)為,故拋物線的準(zhǔn)線方程為,故選:C.【點睛】本題考查拋物線的幾何性質(zhì),一般地,如果拋物線的方程為,則拋物線的焦點的坐標(biāo)為,準(zhǔn)線方程為,本題屬于基礎(chǔ)題.12、C【解析】由等比數(shù)列性質(zhì)求出公比,將原式化簡后計算【詳解】設(shè)等比數(shù)列{}的公比為,則=,=,所以==.又+=+=(+)=8×=2,+=+=(+)=8×=1,所以+++=2+1=3.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、27【解析】設(shè)公比為,利用已知條件求出,然后根據(jù)通項公式可求得答案【詳解】設(shè)公比為,插入的三個數(shù)分別為,因為,所以,得,所以,故答案為:2714、②③【解析】由對立和互斥事件的定義判斷①③;由獨立事件的性質(zhì)判斷②④.【詳解】{紅},則E與F不是互斥事件;且,則F與G是對立事件;,則E與F是獨立事件;,,則F與G不是獨立事件故答案為:②③15、【解析】根據(jù)兩直線平行可得出關(guān)于實數(shù)的等式與不等式,即可解得實數(shù)的值.【詳解】因為,則,解得.故答案為:.16、②③【解析】在矩形中,過點作的垂線,垂足分別為,對于①,連接,假設(shè)存在某個位置,使得,則可得到,進(jìn)而得矛盾,可判斷;對于②在翻折過程中,當(dāng)平面平面時,三棱錐的體積取得最大值,再根據(jù)幾何關(guān)系計算即可;對于③,由題知,,設(shè)平面與平面所成的二面角為,進(jìn)而得,進(jìn)而得異面直線與所成角的余弦值的范圍為,即可判斷.【詳解】解:如圖1,在矩形中,過點作的垂線,垂足分別為,則在在翻折過程中,形成如圖2的幾何體,故對于①,連接,假設(shè)存在某個位置,使得,由于,,所以平面,所以,這與圖1中的與不垂直矛盾,故錯誤;對于②在翻折過程中,當(dāng)平面平面時,三棱錐的體積取得最大值,此時,體積為,故三棱錐的體積不大于,故正確;對于③,,,由②的討論得,所以,所以,設(shè)翻折過程中,平面與平面所成的二面角為,所以,故,由于要使直線與為異面直線,所以,所以,所以,所以異面直線與所成角的余弦值的范圍為,由于,所以在翻折過程中,存在某個位置,使得異面直線與所成角為45°.故答案為:②③三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)有;(2)(i)答案見解析;(ii)250.【解析】(1)根據(jù)列聯(lián)表中的數(shù)據(jù),利用求得,與臨界表值對比下結(jié)論;(2)(ⅰ)根據(jù),利用小概率事件判斷;(ⅱ)易得一個患者屬于“長潛伏期”的概率是,進(jìn)而得到,然后判斷其單調(diào)性求解.【詳解】(1)依題意有,由于,故有的把握認(rèn)為“長期潛伏”與年齡有關(guān);(2)(ⅰ)若潛伏期,由,得知潛伏期超過天的概率很低,因此隔離天是合理的;(ⅱ)由于個病例中有個屬于長潛伏期,若以樣本頻率估計概率,一個患者屬于“長潛伏期”的概率是,于是,則,,當(dāng)時,;當(dāng)時,;∴,.故當(dāng)時,取得最大值.【點睛】方法點睛:利用獨立重復(fù)試驗概率公式可以簡化求概率的過程,但需要注意檢查該概率模型是否滿足公式的三個條件:(1)在一次試驗中某事件A發(fā)生的概率是一個常數(shù)p;(2)n次試驗不僅是在完全相同的情況下進(jìn)行的重復(fù)試驗,而且各次試驗的結(jié)果是相互獨立的;(3)該公式表示n次試驗中事件A恰好發(fā)生了k次的概率18、(1);(2)【解析】(1)根據(jù)向量加減法運算法則可得,根據(jù)計算可得的長度;(2)根據(jù)空間向量的夾角公式計算可得結(jié)果.【小問1詳解】,因為,同理可得,所以【小問2詳解】因為,所以,因為,所以所以異面直線與所成角的余弦值為19、(1);(2)證明見解析.【解析】(1)根據(jù)雙曲線的定義可得答案;(2)設(shè),過點的的切線方程為,聯(lián)立此直線與雙曲線的方程消元,然后由可得,即可得到,然后可證明.【小問1詳解】因為,所以點的軌跡是以為焦點的雙曲線的右支,所以,,所以,所以的方程為【小問2詳解】設(shè),則,設(shè)過點的切線方程為,聯(lián)立可得由可得,所以所以20、(1)(2)或【解析】(1)由已知可得交點坐標(biāo),再根據(jù)直線間的位置關(guān)系可得直線方程;(2)設(shè)直線方程,根據(jù)直線與兩坐標(biāo)軸圍成的三角形的面積,列出方程組,解方程.【小問1詳解】解:聯(lián)立的方程,解得,即設(shè)直線的方程為:,將帶入可得所以的方程為:;【小問2詳解】解:法①:易知直線在兩坐標(biāo)軸上的截距均不為,設(shè)直線方程為:,則直線與兩坐標(biāo)軸交點為,由題意得,解得:或所以直線的方程為:或,即:或.法②:設(shè)直線的斜率為,則的方程為,當(dāng)時,當(dāng)時,所以,解得:或所以m的方程為或即:或.21、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,利用向量法由求解;(1)建立空間直角坐標(biāo)系,先取得平面的一個法向量,,,然后由求解【小問1詳解】解:以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系.則,0,,,2,,,2,,,0,,,0,,,0,,,2,,所以,2,,,2,,則直線與直線所成角的余弦值為;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 收銀前臺掛單制度規(guī)范
- 菏澤職業(yè)學(xué)院制度規(guī)范
- 蒸鍋管理制度規(guī)范標(biāo)準(zhǔn)
- 布料面料采購合同范本
- 承接塔材運輸合同范本
- 房屋買方解除合同協(xié)議
- 組織文化需要制度規(guī)范
- 標(biāo)準(zhǔn)創(chuàng)新規(guī)范制度匯編
- 自動鑰匙管理制度規(guī)范
- 稱重監(jiān)控管理制度規(guī)范
- 2026年【招聘備考題庫】黑龍江省生態(tài)環(huán)保集團(tuán)有限公司面向社會公開招聘管理人員備考題庫及1套完整答案詳解
- 2026國企綜合基礎(chǔ)知識題庫(附答案)
- 王昭君課件教學(xué)課件
- 2025年福建泉州惠安縣宏福殯儀服務(wù)有限公司招聘5人筆試考試參考題庫及答案解析
- 2026年教師資格之中學(xué)教育知識與能力考試題庫300道含答案(a卷)
- 肝硬化頑固性腹水個案護(hù)理
- 2026年上半年西藏省中小學(xué)教師資格考試(筆試)備考題庫附答案(培優(yōu)a卷)
- 《短視頻制作與運營》教案 項目5 短視頻剪輯 (剪映)
- 2025年11月5日更新的REACH第35批251項高度關(guān)注物質(zhì)SVHC清單
- 2023年和田地區(qū)直遴選考試真題匯編附答案解析
- 《5G無線網(wǎng)絡(luò)規(guī)劃部署》課件-17、5G RF優(yōu)化流程
評論
0/150
提交評論