江蘇省鹽城市示范名校2026屆高二上數(shù)學期末統(tǒng)考模擬試題含解析_第1頁
江蘇省鹽城市示范名校2026屆高二上數(shù)學期末統(tǒng)考模擬試題含解析_第2頁
江蘇省鹽城市示范名校2026屆高二上數(shù)學期末統(tǒng)考模擬試題含解析_第3頁
江蘇省鹽城市示范名校2026屆高二上數(shù)學期末統(tǒng)考模擬試題含解析_第4頁
江蘇省鹽城市示范名校2026屆高二上數(shù)學期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省鹽城市示范名校2026屆高二上數(shù)學期末統(tǒng)考模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,是橢圓的兩焦點,是橢圓上任一點,從引外角平分線的垂線,垂足為,則點的軌跡為()A.圓 B.兩個圓C.橢圓 D.兩個橢圓2.橢圓的一個焦點坐標為,則()A.2 B.3C.4 D.83.已知空間四邊形中,,,,點在上,且,為中點,則等于()A. B.C. D.4.已知點A、是拋物線:上的兩點,且線段過拋物線的焦點,若的中點到軸的距離為3,則()A.3 B.4C.6 D.85.若函數(shù)既有極大值又有極小值,則實數(shù)a的取值范圍是()A. B.C. D.6.已知等比數(shù)列的前n項和為,且,則()A.20 B.30C.40 D.507.已知,若,則()A. B.C. D.8.已知數(shù)列的前n項和為,,,則()A. B.C. D.9.求點關于x軸的對稱點的坐標為()A. B.C. D.10.已知數(shù)列滿足,在任意相鄰兩項與(k=1,2,…)之間插入個2,使它們和原數(shù)列的項構成一個新的數(shù)列.記為數(shù)列的前n項和,則的值為()A.162 B.163C.164 D.16511.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.即不充分也不必要條件12.拋物線的焦點到準線的距離是A.2 B.4C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,則其通項公式_______14.經(jīng)過點,的直線的傾斜角為___________.15.已知,,則以AB為直徑的圓的方程為___________.16.某甲、乙兩人練習跳繩,每人練習10組,每組不間斷跳繩計數(shù)的莖葉圖如圖,則下面結論中所有正確的序號是___________.①甲比乙的極差大;②乙的中位數(shù)是18;③甲的平均數(shù)比乙的大;④乙的眾數(shù)是21.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓長軸長為4,A,B分別為左、右頂點,P為橢圓上不同于A,B的動點,且點在橢圓上,其中e為橢圓的離心率(1)求橢圓的標準方程;(2)直線AP與直線(m為常數(shù))交于點Q,①當時,設直線OQ的斜率為,直線BP的斜率為.求證:為定值;②過Q與PB垂直的直線l是否過定點?如果是,請求出定點坐標;如果不是,請說明理由18.(12分)如圖,在三棱錐中,平面平面,且,(1)求證:;(2)求直線與所成角的余弦值19.(12分)如圖,在平面直角坐標系上,已知圓的直徑,定直線到圓心的距離為,且直線垂直于直線,點是圓上異于、的任意一點,直線、分別交與、兩點(1)求過點且與圓相切的直線方程;(2)若,求以為直徑的圓方程;(3)當點變化時,以為直徑的圓是否過圓內(nèi)的一定點,若過定點,請求出定點;若不過定點,請說明理由20.(12分)在①;②;③;這三個條件中任選一個,補充在下面的問題中,然后解答補充完整的題.注:若選擇多個條件分別解答,則按第一個解答計分.已知,且(只需填序號).(1)求的值;(2)求展開式中的奇數(shù)次冪的項的系數(shù)之和21.(12分)正四棱柱的底面邊長為2,側棱長為4.E為棱上的動點,F(xiàn)為棱的中點.(1)證明:;(2)若E為棱上的中點,求直線BE到平面的距離.22.(10分)已知拋物線C:y2=2px(p>0)的焦點與橢圓M:=1的右焦點重合.(1)求拋物線C的方程;(2)直線y=x+m與拋物線C交于A,B兩點,O為坐標原點,當m為何值時,=0.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設的延長線交的延長線于點,由橢圓性質(zhì)推導出,由題意知是△的中位線,從而得到點的軌跡是以為圓心,以為半徑的圓【詳解】是焦點為、的橢圓上一點為的外角平分線,,設的延長線交的延長線于點,如圖,,,,由題意知是△的中位線,,點的軌跡是以為圓心,以為半徑的圓故選:A2、D【解析】由條件可得,,,,由關系可求值.【詳解】∵橢圓方程為:,∴,∴,,∵橢圓的一個焦點坐標為,∴,又,∴,∴,故選:D.3、B【解析】利用空間向量運算求得正確答案.【詳解】.故選:B4、D【解析】直接根據(jù)拋物線焦點弦長公式以及中點坐標公式求結果【詳解】設,,則的中點到軸的距離為,則故選:D5、B【解析】函數(shù)既有極大值又有極小值轉化為導函數(shù)在定義域上有兩個不同的零點.【詳解】因為既有極大值又有極小值,且,所以有兩個不等的正實數(shù)解,所以,且,解得,且.故選:B.6、B【解析】利用等比數(shù)列的前n項和公式即可求解.【詳解】設等比數(shù)列的首項為,公比為,則,由得,即,解得或(舍),且代入①得,則,所以.故選:B.7、B【解析】先求出的坐標,然后由可得,再根據(jù)向量數(shù)量積的坐標運算求解即可.【詳解】因為,,所以,因為,所以,即,解得.故選:B8、D【解析】根據(jù)給定遞推公式求出即可計算作答.【詳解】因數(shù)列的前n項和為,,,則,,,所以.故選:D9、D【解析】根據(jù)點關于坐標軸的對稱點特征,直接寫出即可.【詳解】A點關于x軸對稱點,橫坐標不變,縱坐標與豎坐標為原坐標的相反數(shù),故點的坐標為,故選:D10、C【解析】確定數(shù)列的前70項含有的前6項和64個2,從而求出前70項和.【詳解】,其中之間插入2個2,之間插入4個2,之間插入8個2,之間插入16個2,之間插入32個2,之間插入64個2,由于,,故數(shù)列的前70項含有的前6項和64個2,故故選:C11、D【解析】根據(jù)充分條件、必要條件的判定方法,結合不等式的性質(zhì),即可求解.【詳解】由,可得,即,當時,,但的符號不確定,所以充分性不成立;反之當時,也不一定成立,所以必要性不成立,所以是的即不充分也不必要條件.故選:D.12、D【解析】因為拋物線方程可化為,所以拋物線的焦點到準線的距離是,故選D.考點:1、拋物線的標準方程;2、拋物線的幾何性質(zhì).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】構造法可得,由等比數(shù)列的定義寫出的通項公式,進而可得.【詳解】令,則,又,∴,故,而,∴是公比為,首項為,則,∴.故答案為:.14、【解析】根據(jù)兩點間斜率公式得到斜率,再根據(jù)斜率確定傾斜角大小即可.【詳解】根據(jù)兩點間斜率公式得:,所以直線的傾斜角為:.故答案為:15、【解析】求圓心及半徑即可.【詳解】由已知可得圓心坐標為,半徑為,所以圓的方程為:.故答案為:16、①③④【解析】根據(jù)莖葉圖提供的數(shù)據(jù)求出相應的極差、中位數(shù)、均值、眾數(shù)再判斷【詳解】由莖葉圖,甲的極差是37-8=29,乙的極差是23-9=14,甲極差大,①正確;乙中位數(shù)是,②錯;甲平均數(shù)是:,乙的平均數(shù)為:16.9,③正確;乙的眾數(shù)是21,④正確故答案為:①③④三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)①證明見解析;②直線過定點;【解析】(1)依題意得到方程組,解得,即可求出橢圓方程;(2)①由(1)可得,,設,,表示出直線的方程,即可求出點坐標,從而得到、,即可求出;②在直線方程中令,即可得到的坐標,再求出直線的斜率,即可得到直線的方程,從而求出定點坐標;【小問1詳解】解:依題意可得,即,解得或(舍去),所以,所以橢圓方程為【小問2詳解】解:①由(1)可得,,設,,則直線的方程為,令則,所以,,所以,又點在橢圓上,所以,即,所以,即為定值;②因為直線的方程為,令則,因為,所以,所以直線的方程為,即又,所以,令,解得,所以直線過定點;18、(1)證明見解析;(2).【解析】(1)過點作交的延長線于點,連接,由,,證出平面,即可證出.(2)以為原點,的方向分別為軸正方向,建立空間直角坐標系,寫出相應點的坐標,利用,即可得到答案.【小問1詳解】過點作交的延長線于點,連接,因為,所以,又因為,所以,所以,即,.因為,所以平面,因為平面,所以【小問2詳解】因為平面平面,平面平面,所以平面,以為原點,的方向分別為軸正方向,建立如圖所示的空間直角坐標系,則,可得,因為,所以直線與所成角的余弦值為19、(1)或(2)(3)過定點,定點坐標為【解析】(1)對所求直線的斜率是否存在進行分類討論,在所求直線斜率不存在時,直接驗證直線與圓相切;在所求直線斜率存在時,設所求直線方程為,利用點到直線的距離公式可得出關于的等式,求出的值,綜合可得出所求直線的方程;(2)分點在軸上方、點在軸下方兩種情況討論,求出點、的坐標,可得出所求圓的圓心坐標和半徑,即可得出所求圓的方程;(3)設直線的方程為,其中,求出點、的坐標,可求得以線段為直徑的圓的方程,并化簡圓的方程,可求得定點的坐標.【小問1詳解】解:易知圓的方程為,圓心為原點,半徑為,若所求直線的斜率不存在,則所求直線的方程為,此時直線與圓相切,合乎題意,若所求直線的斜率存在,設所求直線的方程為,即,由已知可得,解得,此時所求直線的方程為.綜上所述,過點且與圓相切的直線方程為或.【小問2詳解】解:易知直線的方程為,、,若點在軸上方,則直線的方程為,在直線的方程中,令,可得,即點,直線的方程為,在直線的方程中,令,可得,即點,線段的中點為,且,此時,所求圓的方程為;若點在軸下方,同理可求得所求圓的方程為.綜上所述,以為直徑的圓方程為.【小問3詳解】解:不妨設直線的方程為,其中,在直線的方程中,令,可得,即點,因為,則直線的方程為,在直線的方程中,令,可得,即點,線段中點為,,所以,以線段為直徑的圓的方程為,即,由,解得,因此,當點變化時,以為直徑的圓是否過圓內(nèi)的定點.20、(1)選①②③,答案均為;(2)66【解析】(1)選①時,利用二項式定理求得的通項公式為,從而得到,求出n的值;選②時,利用二項式系數(shù)和的公式求出,解出n的值;選③時,利用賦值法求解,,從而求出n的值;(2)在第一問求出的的前提下進行賦值法求解.【小問1詳解】選①,其中,而的通項公式為,當時,,所以,解得:;選②,由于,所以,解得:;選③,令中得:,再令得:,解得:;【小問2詳解】由(1)知:n=7,所以,令得:,令得:,兩式相減得:,所以,故展開式中的奇數(shù)次冪的項的系數(shù)和為66.21、(1)證明見解析;(2).【解析】(1)根據(jù)給定條件建立空間直角坐標系,利用空間位置關系的向量證明計算作答.(2)利用(1)中坐標系,證明平面,再求點B到平面的距離即可作答.【小問1詳解】在正四棱柱中,以點D為原點,射線分別為x,y,z軸非負半軸建立空間直角坐標系,如圖,則,因E為棱上的動點,則設,,而,,即,所以.【小問2詳解】由(1)知,點,,,,設平面的一個法向量,則,令,得,顯然有,則,而平面,因此,平面,于是有直線BE到平面的距離等于點B到平面的距離,所以直線BE到平面的距離是.22、(1)y2=4x(2)m=﹣4或m=0【解析】(1)由橢圓的右焦點得出的值,進而得出拋物線C的方程;(2)聯(lián)立直線和拋物線方程,利用韋達定理結合數(shù)量積公式證明即可【小問1詳解】由題意,橢圓=1的右焦點為(1,0),拋物線y2=2px的焦點為(,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論