版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省成都市外國語學(xué)校2026屆高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的離心率為,左、右焦點分別為、,過作軸的平行線交橢圓于、兩點,為坐標(biāo)原點,雙曲線的虛軸長為,且以、為頂點,以直線、為漸近線,則橢圓的短軸長為()A. B.C. D.2.雙曲線的漸近線方程和離心率分別是A. B.C. D.3.2020年北京時間11月24日我國嫦娥五號探月飛行器成功發(fā)射.嫦娥五號是我國探月工程“繞、落、回”三步走的收官之戰(zhàn),經(jīng)歷發(fā)射入軌、地月轉(zhuǎn)移、近月制動、環(huán)月飛行、著陸下降、月面工作、月面上升、交會對接與樣品轉(zhuǎn)移、環(huán)月等待、月地轉(zhuǎn)移、再入回收等11個關(guān)鍵階段.在經(jīng)過交會對接與樣品轉(zhuǎn)移階段后,若嫦娥五號返回器在近月點(離月面最近的點)約為200公里,遠月點(離月面最遠的點)約為8600公里,以月球中心為一個焦點的橢圓形軌道上等待時間窗口和指令進行下一步動作,月球半徑約為1740公里,則此橢圓軌道的離心率約為()A.0.32 B.0.48C.0.68 D.0.824.等差數(shù)列中,若,則()A.42 B.45C.48 D.515.已知數(shù)列滿足,,則()A. B.C. D.6.已知函數(shù)的定義域為,其導(dǎo)函數(shù)為,若,則下列式子一定成立的是()A. B.C. D.7.如圖,在棱長為1的正方體中,P、Q、R分別是棱AB、BC、的中點,以PQR為底面作一個直三棱柱,使其另一個底面的三個頂點也都在正方體的表面上,則這個直三棱柱的體積為()A. B.C. D.8.中國大運河項目成功人選世界文化遺產(chǎn)名錄,成為中國第46個世界遺產(chǎn)項目,隨著對大運河的保護與開發(fā),大運河已成為北京城市副中心的一張亮麗的名片,也成為眾多旅游者的游覽目的地.今有一旅游團乘游船從奧體公園碼頭出發(fā)順流而下至漕運碼頭,又立即逆水返回奧體公園碼頭,已知游船在順?biāo)械乃俣葹?,在逆水中的速度為,則游船此次行程的平均速度V與的大小關(guān)系是()A. B.C. D.9.若圓與直線相切,則實數(shù)的值為()A. B.或3C. D.或10.函數(shù)在的最大值是()A. B.C. D.11.已知拋物線的方程為,則此拋物線的準(zhǔn)線方程為()A. B.C. D.12.已知數(shù)列{}滿足,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.不大于100的正整數(shù)中,被3除余1的所有數(shù)的和是___________14.已知雙曲線,(,)的左右焦點分別為,過的直線與圓相切,與雙曲線在第四象限交于一點,且有軸,則直線的斜率是___________,雙曲線的漸近線方程為___________.15.下圖是4個幾何體的展開圖,圖①是由4個邊長為3的正三角形組成;圖②是由四個邊長為3的正三角形和一個邊長為3的正方形組成;圖③是由8個邊長為3的正三角形組成;圖④是由6個邊長為3的正方形組成若直徑為4的球形容器(不計容器厚度)內(nèi)有一幾何體,則該幾何體的展開圖可以是______(填所有正確結(jié)論的番號)16.已知曲線,則以下結(jié)論正確的是______.①曲線C關(guān)于點對稱;②曲線C關(guān)于y軸對稱;③曲線C被x軸所截得的弦長為2;④曲線C上的點到原點距離都不超過2.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知二次曲線的方程:(1)分別求出方程表示橢圓和雙曲線的條件;(2)若雙曲線與直線有公共點且實軸最長,求雙曲線方程;(3)為正整數(shù),且,是否存在兩條曲線,其交點P與點滿足,若存在,求的值;若不存在,說明理由18.(12分)某快餐配送平臺針對外賣員送餐準(zhǔn)點情況制定了如下的考核方案:每一單自接單后在規(guī)定時間內(nèi)送達、延遲5分鐘內(nèi)送達、延遲5至10分鐘送達、其他延遲情況,分別評定為四個等級,各等級依次獎勵3元、獎勵0元、罰款3元、罰款6元.假定評定為等級的概率分別是.(1)若某外賣員接了一個訂單,求其不被罰款的概率;(2)若某外賣員接了兩個訂單,且兩個訂單互不影響,求這兩單獲得的獎勵之和為3元的概率.19.(12分)某書店剛剛上市了《中國古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價進行試銷,每種單價(元)試銷l天,得到如表單價(元)與銷量(冊)數(shù)據(jù):單價(元)1819202122銷量(冊)6156504845(l)根據(jù)表中數(shù)據(jù),請建立關(guān)于的回歸直線方程:(2)預(yù)計今后的銷售中,銷量(冊)與單價(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價應(yīng)定為多少元?附:,,,.20.(12分)已知命題p:,命題q:.(1)若命題p為真命題,求實數(shù)x的取值范圍.(2)若p是q的充分條件,求實數(shù)m的取值范圍;21.(12分)設(shè)二次函數(shù).(1)若是函數(shù)的兩個零點,且最小值為.①求證:;②當(dāng)且僅當(dāng)a在什么范圍內(nèi)時,函數(shù)在區(qū)間上存在最小值?(2)若任意實數(shù)t,在閉區(qū)間上總存在兩實數(shù)m,n,使得成立,求實數(shù)a的取值范圍.22.(10分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)討論的零點個數(shù).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】不妨取點在第一象限,根據(jù)橢圓與雙曲線的幾何性質(zhì),以及它們之間的聯(lián)系,可得點的坐標(biāo),再將其代入橢圓的方程中,解之即可【詳解】解:由題意知,在橢圓中,有,在雙曲線中,有,,即,雙曲線的漸近線方程為,不妨取點在第一象限,則的坐標(biāo)為,即,將其代入橢圓的方程中,有,,解得,橢圓的短軸長為故選:2、A【解析】先根據(jù)雙曲線的標(biāo)準(zhǔn)方程,求得其特征參數(shù)的值,再利用雙曲線漸近線方程公式和離心率定義分別計算即可.【詳解】雙曲線的,雙曲線的漸近線方程為,離心率為,故選A.【點睛】本題主要考查雙曲線的漸近線及離心率,屬于簡單題.離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解;④根據(jù)圓錐曲線的統(tǒng)一定義求解3、C【解析】由題意可知,求出的值,從而可求出橢圓的離心率【詳解】解:由題意得,解得,所以離心率,故選:C4、C【解析】結(jié)合等差數(shù)列的性質(zhì)求得正確答案.【詳解】依題意是等差數(shù)列,,.故選:C5、A【解析】根據(jù)遞推關(guān)系依次求出即可.【詳解】,,,,,.故選:A.6、B【解析】令,求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)性,即可得到,從而求出答案【詳解】解:令,則,又不等式恒成立,所以,即,所以在單調(diào)遞增,故,即,所以,故選:B7、C【解析】分別取的中點,連接,利用棱柱的定義證明幾何體是三棱柱,再證明平面PQR,得到三棱柱是直三棱柱求解.【詳解】如圖所示:連接,分別取其中點,連接,則,且,所以幾何體是三棱柱,又,且,所以平面,所以,同理,又,所以平面PQR,所以三棱柱是直三棱柱,因為正方體的棱長為1,所以,所以直三棱柱的體積為,故選:C8、A【解析】求出平均速度V,進而結(jié)合基本不等式求得答案.【詳解】易知,設(shè)奧運公園碼頭到漕運碼頭之間的距離為1,則游船順流而下的時間為,逆流而上的時間為,則平均速度,由基本不等式可得,而,當(dāng)且僅當(dāng)時,兩個不等式都取得“=”,而根據(jù)題意,于是.故選:A.9、D【解析】利用圓心到直線的距離等于半徑可得答案.【詳解】若圓與直線相切,則到直線的距離為,所以,解得,或.故選:D.10、C【解析】利用函數(shù)單調(diào)性求解.【詳解】解:因為函數(shù)是單調(diào)遞增函數(shù),所以函數(shù)也是單調(diào)遞增函數(shù),所以.故選:C11、A【解析】由拋物線的方程直接寫出其準(zhǔn)線方程即可.【詳解】由拋物線的方程為,則其準(zhǔn)線方程為:故選:A12、B【解析】先將通項公式化簡然后用裂項相消法求解即可.【詳解】因為,.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、1717【解析】利用等差數(shù)列的前項和公式可求所有數(shù)的和.【詳解】100以內(nèi)的正整數(shù)中,被3除余1由小到大構(gòu)成等差數(shù)列,其首項為1,公差為3,共有項,它們的和為,故答案為:.14、①.②.【解析】由題意,不妨設(shè)直線與圓相切于點,由可得,代入雙曲線方程,可得,因此,即得解【詳解】如圖所示,不妨設(shè)直線與圓相切于點,,由于代入進入,可得,漸近線方程為故答案為:,15、①【解析】根據(jù)幾何體展開圖可知①正四面體、②正四棱錐、③正八面體、④正方體,進而求其外接球半徑,并與4比較大小,即可確定答案.【詳解】若幾何體外接球球心為,半徑為,①由題設(shè),幾何體為棱長為3的正四面體,為底面中心,則,,所以,可得,即,滿足要求;②由題設(shè),幾何體為棱長為3的正四棱錐,為底面中心,則,所以,可得,即,不滿足要求;③由題設(shè),幾何體為棱長為3的正八面體,其外接球直徑同棱長為3的正四棱錐,故不滿足要求;④由題設(shè),幾何體為棱長為3的正方體,體對角線的長度即為外接球直徑,所以,不滿足要求;故答案為:①16、②④【解析】將x換成,將y換成,若方程不變則關(guān)于原點對稱;將x換成,曲線的方程不變則關(guān)于y軸對稱;令通過解方程即可求得被x軸所截得的弦長;利用基本不等式即可判斷出曲線C上y軸右側(cè)的點到原點距離是否不超過2,根據(jù)曲線C關(guān)于y軸對稱,即可判斷出曲線C上的點到原點距離是否都不超過2.【詳解】對于①,將x換成,將y換成,方程改變,則曲線C關(guān)于點不對稱,故①錯誤;對于②,將x換成,曲線的方程不變,則曲線C關(guān)于y軸對稱,故②正確;對于③,令得,,解得,即曲線C與x軸的交點為和,則曲線C被x軸所截得的弦長為,故③錯誤;對于④,當(dāng)時,,可得,當(dāng)且僅當(dāng)時取等號,即,則,即曲線C上y軸右側(cè)的點到原點的距離都不超過2,此曲線關(guān)于y軸對稱,即曲線C上y軸左側(cè)的點到原點的距離也不超過2,故④正確;故答案為:②④.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)時,方程表示橢圓,時,方程表示雙曲線;(2);(3)存在,且或或.【解析】(1)當(dāng)且僅當(dāng)分母都為正,且不相等時,方程表示橢圓;當(dāng)且僅當(dāng)分母異號時,方程表示雙曲線(2)將直線與曲線聯(lián)立化簡得:,利用雙曲線與直線有公共點,可確定的范圍,從而可求雙曲線的實軸,進而可得雙曲線方程;(3)由(1)知,,是橢圓,,,,是雙曲線,結(jié)合圖象的幾何性質(zhì),任意兩橢圓之間無公共點,任意兩雙曲線之間無公共點,從而可求【詳解】(1)當(dāng)且僅當(dāng)時,方程表示橢圓;當(dāng)且僅當(dāng)時,方程表示雙曲線(2)化簡得:△或所以雙曲線的實軸為,當(dāng)時,雙曲線實軸最長為此時雙曲線方程為(3)由(1)知,,是橢圓,,,,是雙曲線,結(jié)合圖象的幾何性質(zhì)任意兩橢圓之間無公共點,任意兩雙曲線之間無公共點設(shè),,,2,,,6,7,由橢圓與雙曲線定義及;所以所以這樣的,存在,且或或【點睛】方法點睛:曲線方程的確定可分為兩類:若已知曲線類型,則采用待定系數(shù)法;若曲線類型未知時,則可利用直接法、定義法、相關(guān)點法等求解或者利用分類討論思想求解.18、(1)(2)【解析】(1)利用互斥事件的概率公式,即可求解;(2)由條件可知兩單共獲得的獎勵為3元即事件,同樣利用互斥事件和的概率,即可求解.【小問1詳解】設(shè)事件分別表示“被評為等級”,由題意,事件兩兩互斥,所以,又“不被罰款”,所以.因此“不被罰款”概率為;【小問2詳解】設(shè)事件表示“第單被評為等級”,,則“兩單共獲得的獎勵為3元”即事件,且事件彼此互斥,又,所以.19、(1)(2)當(dāng)單價應(yīng)定為22.5元時,可獲得最大利潤【解析】(l)先計算的平均值,再代入公式計算得到(2)計算利潤為:計算最大值.【詳解】解:(1),,,所以對的回歸直線方程為:(2)設(shè)獲得的利潤為,,因為二次函數(shù)的開口向下,所以當(dāng)時,取最大值,所以當(dāng)單價應(yīng)定為22.5元時,可獲得最大利潤【點睛】本題考查了回歸方程,函數(shù)的最值,意在考查學(xué)生的計算能力.20、(1);(2).【解析】(1)由一元二次不等式的解法求得的范圍;(2)由p是q的充分條件,轉(zhuǎn)化為集合的包含關(guān)系,從而可求實數(shù)m的取值范圍.【詳解】(1)由p:為真,解得.(2)q:,若p是q的充分條件,則是的子集所以.即.21、(1)①證明見解析;②(2)【解析】(1)①根據(jù)二次函數(shù)的性質(zhì)和一元二次方程的求根公式,求得,即可證得;②由①知,區(qū)間,根據(jù)二次函數(shù)的性質(zhì),即可求解.(2)存在兩實數(shù),使得成立,轉(zhuǎn)化為在區(qū)間上,有成立,設(shè)﹐結(jié)合二次函數(shù)的圖象與性質(zhì),分類討論,即可求解.【小問1詳解】解:①由題意,函數(shù)二次函數(shù),因為最小值為,可得,即,因為,所以根據(jù)求根公式得,所以.②由①知,區(qū)間因為,對稱軸,且函數(shù)在區(qū)間上存在最小值,所以,因為,所以解得,所以,即a的取值范圍為.【小問2詳解】解:存在兩實數(shù),使得成立,則在區(qū)間上,有成立,設(shè)﹐函數(shù)對稱軸為①當(dāng)即時,在上單調(diào)減,,此時;②當(dāng)即時,,此時③當(dāng)即時,,此時;④當(dāng)即時,,此時;綜合①②③④得,且最小值為,因為對任意實數(shù)t,都有,所以只需,即,所以實數(shù)a的取值范圍.22、(1)單調(diào)遞增區(qū)間是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 超聲初級考試題庫及答案
- 2026重慶法治考試題庫及答案
- 大數(shù)據(jù)預(yù)測噪聲性睡眠干預(yù)需求的應(yīng)用
- 大數(shù)據(jù)在精準(zhǔn)醫(yī)療中的整合策略
- 烹飪考試題及答案
- 多組學(xué)整合的代謝網(wǎng)絡(luò)分析平臺
- 2025年中職休閑農(nóng)業(yè)生產(chǎn)與經(jīng)營(休閑農(nóng)業(yè)機械操作)試題及答案
- 2026年教育技術(shù)(技術(shù)應(yīng)用)試題及答案
- 2025年大學(xué)物聯(lián)網(wǎng)工程(物聯(lián)網(wǎng)理論)試題及答案
- 2025年高職(數(shù)控技術(shù))編程優(yōu)化階段測試題及答案
- 新一代能源管理系統(tǒng)建設(shè)方案
- 小型手持式采茶機
- 人工智能與終身學(xué)習(xí)體系構(gòu)建研究報告
- 2025杭州市市級機關(guān)事業(yè)單位編外招聘考試備考試題及答案解析
- 化學(xué)反應(yīng)原理大題集訓(xùn)(含解析)-2026屆高中化學(xué)一輪復(fù)習(xí)講義
- 團隊成員介紹課件
- 醫(yī)院敏感數(shù)據(jù)安全管理規(guī)范
- 政協(xié)機車輛管理辦法
- 渝22TS02 市政排水管道附屬設(shè)施標(biāo)準(zhǔn)圖集 DJBT50-159
- 母嬰護理員職業(yè)道德課件
- 電力工程應(yīng)急管理措施
評論
0/150
提交評論