江西省贛州市南康三中、興國一中2026屆高二數(shù)學第一學期期末綜合測試試題含解析_第1頁
江西省贛州市南康三中、興國一中2026屆高二數(shù)學第一學期期末綜合測試試題含解析_第2頁
江西省贛州市南康三中、興國一中2026屆高二數(shù)學第一學期期末綜合測試試題含解析_第3頁
江西省贛州市南康三中、興國一中2026屆高二數(shù)學第一學期期末綜合測試試題含解析_第4頁
江西省贛州市南康三中、興國一中2026屆高二數(shù)學第一學期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江西省贛州市南康三中、興國一中2026屆高二數(shù)學第一學期期末綜合測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B.C. D.2.直線與直線的位置關系是()A.相交但不垂直 B.平行C.重合 D.垂直3.已知拋物線y2=4x的焦點為F,定點,M為拋物線上一點,則|MA|+|MF|的最小值為()A.3 B.4C.5 D.64.已知,為橢圓的左、右焦點,P為橢圓上一點,若,則P點的橫坐標為()A. B.C.4 D.95.下列事件:①連續(xù)兩次拋擲同一個骰子,兩次都出現(xiàn)2點;②某人買彩票中獎;③從集合中任取兩個不同元素,它們的和大于2;④在標準大氣壓下,水加熱到90℃時會沸騰.其中是隨機事件的個數(shù)是()A.1 B.2C.3 D.46.某公司有1000名員工,其中:高層管理人員為50名,屬于高收入者;中層管理人員為150名,屬于中等收入者;一般員工為800名,屬于低收入者.要對這個公司員工的收入情況進行調查,欲抽取100名員工,應當抽取的一般員工人數(shù)為()A.100 B.15C.80 D.507.已知M、N為橢圓上關于短軸對稱的兩點,A、B分別為橢圓的上下頂點,設、分別為直線的斜率,則的最小值為()A. B.C. D.8.的二項展開式中,二項式系數(shù)最大的項是第()項.A.6 B.5C.4和6 D.5和79.函數(shù),則的值為()A. B.C. D.10.已知函數(shù)在區(qū)間有且僅有2個極值點,則m的取值范圍是()A. B.C. D.11.某校初一有500名學生,為了培養(yǎng)學生良好的閱讀習慣,學校要求他們從四大名著中選一本閱讀,其中有200人選《三國演義》,125人選《水滸傳》,125人選《西游記》,50人選《紅樓夢》,若采用分層抽樣的方法隨機抽取40名學生分享他們的讀后感,則選《西游記》的學生抽取的人數(shù)為()A.5 B.10C.12 D.1512.已知雙曲線,則雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在數(shù)列中,,,則___________.14.已知雙曲線的兩個焦點分別為,,為雙曲線上一點,且,則的值為________15.已知平面的一個法向量為,點為內一點,則點到平面的距離為___________.16.已知雙曲線:,,是其左右焦點.圓:,點為雙曲線右支上的動點,點為圓上的動點,則的最小值是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設橢圓:的左頂點為,右頂點為.已知橢圓的離心率為,且以線段為直徑的圓被直線所截得的弦長為.(1)求橢圓的標準方程;(2)設過點的直線與橢圓交于點,且點在第一象限,點關于軸對稱點為點,直線與直線交于點,若直線斜率大于,求直線的斜率的取值范圍.18.(12分)已知橢圓C:的離心率為,點為橢圓C上一點(1)求橢圓C的方程;(2)若M,N是橢圓C上的兩個動點,且的角平分線總是垂直于y軸,求證:直線MN的斜率為定值19.(12分)已知函數(shù),其中.(1)當時,求函數(shù)的單調性;(2)若對,不等式在上恒成立,求的取值范圍.20.(12分)已知直線過點,且被兩條平行直線,截得的線段長為.(1)求的最小值;(2)當直線與軸平行時,求的值.21.(12分)如圖,在四棱柱中,,,,四邊形為菱形,在平面ABCD內的射影O恰好為AD的中點,M為AB的中點.(1)求證:平面;(2)求平面與平面夾角的余弦值.22.(10分)某城市地鐵公司為鼓勵人們綠色出行,決定按照乘客經(jīng)過地鐵站的數(shù)量實施分段優(yōu)惠政策,不超過12站的地鐵票價如下表:乘坐站數(shù)票價(元)246現(xiàn)有甲、乙兩位乘客同時從起點乘坐同一輛地鐵,已知他們乘坐地鐵都不超過12站,且他們各自在每個站下地鐵的可能性是相同的.(1)若甲、乙兩人共付費6元,則甲、乙下地鐵的方案共有多少種?(2)若甲、乙兩人共付費8元,則甲比乙先下地鐵的方案共有多少種?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應在棱柱上下底面三角形的外心連線上,在中,計算半徑即可.【詳解】由,,可知平面將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得又,故在中,此即為外接球半徑,從而外接球表面積為故選:A【點睛】本題考查了三棱錐外接球的表面積,考查了學生空間想象,邏輯推理,綜合分析,數(shù)學運算的能力,屬中檔題.2、C【解析】把直線化簡后即可判斷.【詳解】直線可化為,所以直線與直線的位置關系是重合.故選:C3、B【解析】作出圖象,過點M作準線的垂線,垂足為H,結合圖形可得當且僅當三點M,A,H共線時|MA|+|MH|最小,求解即可【詳解】過點M作準線的垂線,垂足為H,由拋物線的定義可知|MF|=|MH|,則問題轉化為|MA|+|MH|的最小值,結合圖形可得當且僅當三點M,A,H共線時|MA|+|MH|最小,其最小值為.故選:B4、B【解析】設,,根據(jù)向量的數(shù)量積得到,與橢圓方程聯(lián)立,即可得到答案;【詳解】設,,,與橢圓聯(lián)立,解得:,故選:B5、B【解析】因為隨機事件指的是在一定條件下,可能發(fā)生,也可能不發(fā)生的事件,只需逐一判斷4個事件哪一個符合這種情況即可【詳解】解:連續(xù)兩次拋擲同一個骰子,兩次都出現(xiàn)2點這一事件可能發(fā)生也可能不發(fā)生,①是隨機事件某人買彩票中獎這一事件可能發(fā)生也可能不發(fā)生,②是隨機事件從集合,2,中任取兩個元素,它們的和必大于2,③是必然事件在標準大氣壓下,水加熱到時才會沸騰,④是不可能事件故隨機事件有2個,故選:B6、C【解析】按照比例關系,分層抽取.【詳解】由題意可知,所以應當抽取的一般員工人數(shù)為.故選:C7、A【解析】利用為定值即可獲解.【詳解】設則又,所以所以當且僅當,即,取等故選:A8、A【解析】由二項展開的中間項或中間兩項二項式系數(shù)最大可得解.【詳解】因為二項式展開式一共11項,其中中間項的二項式系數(shù)最大,易知當r=5時,最大,即二項展開式中,二項式系數(shù)最大的為第6項.故選:A9、B【解析】求出函數(shù)的導數(shù),代入求值即可.【詳解】函數(shù),故,所以,故選:B10、A【解析】根據(jù)導數(shù)的性質,結合余弦型函數(shù)的性質、極值的定義進行求解即可.【詳解】由,,因為在區(qū)間有且僅有2個極值點,所以令,解得,因此有,故選:A11、B【解析】根據(jù)分層抽樣的方法,列出方程,即可求解.【詳解】根據(jù)分層抽樣的方法,可得選《西游記》的學生抽取的人數(shù)為故選:B.12、A【解析】求出、的值,可得出雙曲線的漸近線方程.【詳解】在雙曲線中,,,因此,該雙曲線的漸近線方程為.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、##.【解析】由遞推關系取可求,再取求,取求.詳解】由分別取,2,3可得,,,又,∴,,,故答案為:.14、2【解析】求得雙曲線的a,b,c,不妨設P為雙曲線右支上的點,|PF1|=m,|PF2|=n,利用雙曲線的定義、余弦定理列出方程組,求出mn即可.【詳解】雙曲線的a=2,b=1,c=,不妨設P為雙曲線右支上的點,|PF1|=m,|PF2|=n,則,①由余弦定理可得,②聯(lián)立①②可得故答案為:215、1【解析】利用空間向量求點到平面的距離即可.【詳解】,,∴則點P到平面的距離為.故答案為:1.16、##【解析】利用雙曲線定義,將的最小值問題轉化為的最小值問題,然后結合圖形可解.【詳解】由題設知,,,,圓的半徑由點為雙曲線右支上的動點知∴∴.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)直線被圓截得的弦長為,由解得,再由離心率結合求解。(2)設,則,得到直線:;直線:,聯(lián)立求得,再根據(jù)線斜率大于,求得,然后由求解.【詳解】(1)以線段為直徑的圓的圓心為:,半徑,圓心到直線的距離,直線被圓截得的弦長為,解得:,又橢圓離心率,∴,,橢圓的標準方程為:.(2)設,其中,,則,∴,,則直線為:;直線為:,由得:,∴,∴,∴,令,,則,∴,∵∴,∴,即.【點睛】本題主要考查橢圓方程和幾何性質以及直線與圓,橢圓的位置關系的應用,還考查了運算求解的能力,屬于中檔題.18、(1);(2)證明見解析.【解析】(1)根據(jù)橢圓的離心率公式,結合代入法進行求解即可;(2)根據(jù)角平分線的性質,結合一元二次方程根與系數(shù)關系、斜率公式進行求解即可.【小問1詳解】橢圓的離心率,又,∴∵橢圓C:經(jīng)過點,解得,∴橢圓C的方程為;【小問2詳解】∵∠MPN的角平分線總垂直于y軸,∴MP與NP所在直線關于直線對稱.設直線MP的斜率為k,則直線NP的斜率為∴設直線MP的方程為,直線NP的方程為設點,由消去y,得∵點在橢圓C上,則有,即同理可得∴,又∴直線MN的斜率為【點睛】關鍵點睛:由∠MPN的角平分線總垂直于y軸,得到MP與NP所在直線關于直線對稱是解題的關鍵.19、(1)的單調遞增區(qū)間為,,單調遞減區(qū)間為,(2)【解析】(1)求導可得,分析正負即得解;(2)轉化在上恒成立為,分析函數(shù)單調性,轉化為f(1)≤1f(-1)≤1,求解即可【小問1詳解】當時,令,解得,,當變化時,,的變化情況如下表:↘極小值↗極大值↘極小值↗所以的單調遞增區(qū)間為,,單調遞減區(qū)間為,【小問2詳解】由條件可知,從而恒成立當時,;當時,因此函數(shù)在上的最大值是與兩者中的較大者為使對任意的,不等式在上恒成立,當且僅當f(1)≤1f(-1)≤1即在上恒成立所以,因此滿足條件的的取值范圍是20、(1)3;(2)5【解析】(1)由題可得和的距離即為的最小值;(2)可得此時直線的方程為,求出交點坐標即可求出距離.【詳解】(1)由題可得當且時,取得最小值,即和的距離,由兩平行線間的距離公式,得,所以的最小值為3.(2)當直線與軸平行時,方程為,設直線與直線,分別交于點,,則,,所以,即,所以.21、(1)證明見解析(2)【解析】(1)先證明,,即可證明平面;(2)建立空間直角坐標系,利用向量法求解即可.【小問1詳解】因為O為在平面ABCD內的射影,所以平面ABCD,因為平面ABCD,所以.如圖,連接BD,在中,.設CD的中點為P,連接BP,因為,,,所以,且,則.因為,所以,易知,所以.因為平面,平面,,所以平面.【小問2詳解】由(1)知平面ABCD,所以可以點O為坐標原點,以OA,,所在直線分別為x,z,以平面ABCD內過點O且垂直于OA的直線為y軸,建立如圖所示的空間直角坐標系,則,,,,,所以,,,,設平面的法向量為,,,則可取平面的一個法向量為.設平面的法向量為,,,則令,得平面的一個法向量為.設平面與平面的平面角為,由法向量的方向可知與法向量的夾角大小相等,所以,所以平面與平面夾角的余弦值為.22、(1)24(種)(2)21(種)【解析】(1)先根據(jù)共付費6元得一人付費2元一人付費4元,再確定人與乘坐站數(shù),即可得結果;(2)先根據(jù)共付費8元得一人付費2元一人付費6元或兩人都付費4元,再求甲比乙先下地鐵的方案數(shù).【小問1詳解】由已知可得:甲、乙兩人共付費6元,則甲、乙一人付費2元一人付費4元,又付費2元的乘坐站數(shù)有1,2,3三種選擇,付費4元的乘坐站數(shù)有4,5,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論