版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆山東菏澤市數(shù)學(xué)高二上期末經(jīng)典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)的部分圖象如圖所示,且經(jīng)過點(diǎn),則()A.關(guān)于點(diǎn)對稱B.關(guān)于直線對稱C.為奇函數(shù)D.為偶函數(shù)2.設(shè)數(shù)列的前項(xiàng)和為,當(dāng)時,,,成等差數(shù)列,若,且,則的最大值為()A. B.C. D.3.函數(shù)的導(dǎo)數(shù)為()A.B.CD.4.若函數(shù)在上有且僅有一個極值點(diǎn),則實(shí)數(shù)的取值范圍為()A. B.C. D.5.已知函數(shù)的定義域?yàn)?,其?dǎo)函數(shù)為,若,則下列式子一定成立的是()A. B.C. D.6.為迎接第24屆冬季奧運(yùn)會,某校安排甲、乙、丙、丁、戊共5名學(xué)生擔(dān)任冰球、冰壺和短道速滑三個項(xiàng)目的志愿者,每個比賽項(xiàng)目至少安排1人,每人只能安排到1個項(xiàng)目,則所有排法的總數(shù)為()A.60 B.120C.150 D.2407.命題,,則是()A., B.,C., D.,8.若一個正方體的全面積是72,則它的對角線長為()A. B.12C. D.69.已知命題p:,,則命題p的否定為()A, B.,C., D.,10.已知直線,橢圓.若直線l與橢圓C交于A,B兩點(diǎn),則線段AB的中點(diǎn)的坐標(biāo)為()A. B.C. D.11.已知直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.12.宋元時期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生"的問題,松長三尺,竹長一尺,松日自半,竹日自倍,松竹何日而長等,如圖是源于其思想的一個程序框圖,若輸入的,分別為3,1,則輸出的等于A.5 B.4C.3 D.2二、填空題:本題共4小題,每小題5分,共20分。13.復(fù)數(shù)(其中i為虛數(shù)單位)的共軛復(fù)數(shù)______14.已知為拋物線的焦點(diǎn),為拋物線上的任意一點(diǎn),點(diǎn),則的最小值為______.15.一個六棱錐的體積為,其底面是邊長為的正六邊形,側(cè)棱長都相等,則該六棱錐的側(cè)面積為.16.若復(fù)數(shù)z=為純虛數(shù)(),則|z|=_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點(diǎn)分別為、,離心率,且過點(diǎn)(1)求橢圓C的方程;(2)已知過的直線l交橢圓C于A、B兩點(diǎn),試探究在平面內(nèi)是否存在定點(diǎn)Q,使得是一個確定的常數(shù)?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說明理由18.(12分)已知拋物線焦點(diǎn)是,斜率為的直線l經(jīng)過F且與拋物線相交于A、B兩點(diǎn)(1)求該拋物線的標(biāo)準(zhǔn)方程和準(zhǔn)線方程;(2)求線段AB的長19.(12分)噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問題,為了解聲音強(qiáng)度D(單位:)與聲音能量I(單位:)之間的關(guān)系,將測量得到的聲音強(qiáng)度D和聲音能量I的數(shù)據(jù)作了初步處理,得到如圖所示的散點(diǎn)圖:參考數(shù)據(jù):其中,,,,,,,,(1)根據(jù)散點(diǎn)圖判斷,與哪一個適宜作為聲音強(qiáng)度D關(guān)于聲音能量I的回歸模型?(給出判斷即可,不必說明理由)(2)求聲音強(qiáng)度D關(guān)于聲音能量I回歸方程(3)假定當(dāng)聲音強(qiáng)度D大于時,會產(chǎn)生噪聲污染.城市中某點(diǎn)P處共受到兩個聲源的影響,這兩個聲通的聲音能量分別是和,且.已知點(diǎn)P處的聲音能量等于與之和.請根據(jù)(2)中的回歸方程,判斷點(diǎn)P處是否受到噪聲污染,并說明理由參考公式:對于一組數(shù)據(jù),其回歸直線斜率和截距的最小二乘估計(jì)公式分別為:20.(12分)已知:圓是的外接圓,邊所在直線的方程為,中線所在直線的方程為,直線與圓相切于點(diǎn).(1)求點(diǎn)和點(diǎn)的坐標(biāo);(2)求圓的方程.21.(12分)在直三棱柱中,、、、分別為中點(diǎn),.(1)求證:平面(2)求二面角的余弦值22.(10分)已知拋物線的焦點(diǎn)F到準(zhǔn)線的距離為2(1)求C的方程;(2)已知O為坐標(biāo)原點(diǎn),點(diǎn)P在C上,點(diǎn)Q滿足,求直線斜率最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)圖象求得函數(shù)解析式,結(jié)合三角函數(shù)的圖象與性質(zhì),逐項(xiàng)判定,即可求解.【詳解】由題意,可得,根據(jù)圖形走勢,可得,解得,令,可得,所以,由,所以A不正確;由,可得不是函數(shù)的對稱軸,所以B不正確;由,此時函數(shù)為非奇非偶函數(shù),所以C不正確;由為偶函數(shù),所以D正確.故選:D.2、A【解析】根據(jù)等差中項(xiàng)寫出式子,由遞推式及求和公式寫出和,進(jìn)而得出結(jié)果.【詳解】解:由,,成等差數(shù)列,可得,則,,,可得數(shù)列中,每隔兩項(xiàng)求和是首項(xiàng)為,公差為的等差數(shù)列.則,,則的最大值可能為.由,,可得.因?yàn)椋?,,即,所以,則,當(dāng)且僅當(dāng)時,,符合題意,故的最大值為.故選:A.【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì)和遞推式的應(yīng)用,考查分析問題能力,屬于難題.3、B【解析】由導(dǎo)數(shù)運(yùn)算法則可求出.【詳解】,.故選:B.4、C【解析】根據(jù)極值點(diǎn)的意義,可知函數(shù)的導(dǎo)函數(shù)在上有且僅有一個零點(diǎn).結(jié)合零點(diǎn)存在定理,即可求得的取值范圍.【詳解】函數(shù)則因?yàn)楹瘮?shù)在上有且僅有一個極值點(diǎn)即在上有且僅有一個零點(diǎn)根據(jù)函數(shù)零點(diǎn)存在定理可知滿足即可代入可得解得故選:C【點(diǎn)睛】本題考查了函數(shù)極值點(diǎn)的意義,函數(shù)零點(diǎn)存在定理的應(yīng)用,屬于中檔題.5、B【解析】令,求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)性,即可得到,從而求出答案【詳解】解:令,則,又不等式恒成立,所以,即,所以在單調(diào)遞增,故,即,所以,故選:B6、C【解析】結(jié)合排列組合的知識,分兩種情況求解.【詳解】當(dāng)分組為1人,1人,3人時,有種,當(dāng)分組為1人,2人,2人時有種,所以共有種排法.故選:C7、D【解析】根據(jù)特稱命題的否定為全稱命題,即可得到答案.【詳解】因?yàn)槊},,所以,.故選:D8、D【解析】根據(jù)全面積得到正方體的棱長,再由勾股定理計(jì)算對角線.【詳解】設(shè)正方體的棱長為,對角線長為,則有,解得,從而,解得.故選:D9、A【解析】根據(jù)特稱命題的否定是全稱命題,結(jié)合已知條件,即可求得結(jié)果.【詳解】因?yàn)槊}p:,,故命題p的否定為:,.故選:A.10、B【解析】聯(lián)立直線方程與橢圓方程,消y得到關(guān)于x的一元二次方程,根據(jù)韋達(dá)定理可得,進(jìn)而得出中點(diǎn)的橫坐標(biāo),代入直線方程求出中點(diǎn)的縱坐標(biāo)即可.【詳解】由題意知,,消去y,得,則,,所以A、B兩點(diǎn)中點(diǎn)的橫坐標(biāo)為:,所以中點(diǎn)的縱坐標(biāo)為:,即線段AB的中點(diǎn)的坐標(biāo)為.故選:B11、C【解析】作出輔助線,找到異面直線與所成角,進(jìn)而利用余弦定理及勾股定理求出各邊長,最后利用余弦定理求出余弦值.【詳解】如圖所示,把三棱柱補(bǔ)成四棱柱,異面直線與所成角為,由勾股定理得:,,∴故選:C12、B【解析】由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量S的值,模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案【詳解】解:當(dāng)n=1時,a=3,b=2,滿足進(jìn)行循環(huán)的條件,當(dāng)n=2時,a,b=4,滿足進(jìn)行循環(huán)的條件,當(dāng)n=3時,a,b=8,滿足進(jìn)行循環(huán)的條件,當(dāng)n=4時,a,b=16,不滿足進(jìn)行循環(huán)的條件,故輸出的n值為4,故選:B【點(diǎn)睛】本題考查的知識點(diǎn)是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)共軛復(fù)數(shù)的概念,即可得答案.【詳解】由題意可知:復(fù)數(shù)(其中i為虛數(shù)單位)的共軛復(fù)數(shù),故答案為:14、【解析】由拋物線的幾何性質(zhì)知:,由圖知為的最小值,求長度即可.【詳解】點(diǎn)是拋物線的焦點(diǎn),其準(zhǔn)線方程為,作于,作于,∴,當(dāng)且僅當(dāng)為與拋物線的交點(diǎn)時取得等號,∴的最小值為.故答案為:.15、【解析】判斷棱錐是正六棱錐,利用體積求出棱錐的高,然后求出斜高,即可求解側(cè)面積∵一個六棱錐的體積為,其底面是邊長為2的正六邊形,側(cè)棱長都相等,∴棱錐是正六棱錐,設(shè)棱錐的高為h,則棱錐斜高為該六棱錐的側(cè)面積為考點(diǎn):棱柱、棱錐、棱臺的體積16、【解析】利用復(fù)數(shù)z=為純虛數(shù)求出a,即可求出|z|.【詳解】z=.由純虛數(shù)的定義知,,解得.所以.故|z|=.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,定點(diǎn)【解析】(1)根據(jù)已知條件求得,由此求得橢圓的方程.(2)對直線的斜率是否存在進(jìn)行分類討論,設(shè)出直線的方程并與橢圓方程聯(lián)立,結(jié)合是常數(shù)列方程,從而求得定點(diǎn)的坐標(biāo).小問1詳解】,,由題可得:.【小問2詳解】當(dāng)直線AB的斜率存在時,設(shè)直線AB的方程為,設(shè),,聯(lián)立方程組,整理得,可得,所以則恒成立,則,解得,,,此時,即存在定點(diǎn)滿足條件當(dāng)直線AB的斜率不存在時,直線AB的方程為x=-2,可得,,設(shè)要使得是一個常數(shù),即,顯然,也使得成立;綜上所述:存在定點(diǎn)滿足條件.18、(1)拋物線的方程為,其準(zhǔn)線方程為,(2)【解析】(1)根據(jù)焦點(diǎn)可求出的值,從而求出拋物線的方程,即可得到準(zhǔn)線方程;(2)設(shè),,,,將直線的方程與拋物線方程聯(lián)立消去,整理得,得到根與系數(shù)的關(guān)系,由拋物線的定義可知,代入即可求出所求【小問1詳解】解:由焦點(diǎn),得,解得所以拋物線的方程為,其準(zhǔn)線方程為,【小問2詳解】解:設(shè),,,直線的方程為.與拋物線方程聯(lián)立,得,消去,整理得,由拋物線定義可知,所以線段的長為19、(1)更適合(2)(3)點(diǎn)P處會受到噪聲污染,理由見解析【解析】(1)直接判斷即可;(2)令,先算線性回歸方程再算非線性回歸方程;(3)利用基本不等式計(jì)算出的最小值,再與60比較即可.【小問1詳解】更適合【小問2詳解】令,則,,D關(guān)于W的回歸方程是,則D關(guān)于I的回歸方程是【小問3詳解】設(shè)點(diǎn)P處的聲音能量為,則因?yàn)樗援?dāng)且僅當(dāng),即時等號成立所以,所以點(diǎn)P處會受到噪聲污染20、(1)A(1,7),(2)【解析】(1)與的的交點(diǎn)為點(diǎn)D,與的的交點(diǎn)為點(diǎn)A,聯(lián)立解方程即可得出結(jié)果.(2)設(shè)圓P的圓心P為,由,,計(jì)算求解即可得出點(diǎn)坐標(biāo),由求得半徑,進(jìn)而可得出圓的方程.【小問1詳解】由題可得:與的的交點(diǎn)為點(diǎn)D,故由,解得:,故與的的交點(diǎn)為點(diǎn)A,,解得:,故A(1,7)【小問2詳解】設(shè)圓P的圓心P為,由與圓相切于點(diǎn)A,且的斜率為,則即,即,①又圓P為的外接圓,則BC為圓P的弦,又邊BC所在直線的科率為,故根據(jù)垂徑定理,有進(jìn)而,即②,聯(lián)立①②,解得:,即故,則圓P的方程為:.21、(1)見解析;(2)【解析】(1)取中點(diǎn),連接,根據(jù)直棱柱的特征,易知,再由、分別為的中點(diǎn),根據(jù)中位線定理,可得,得到四邊形為平行四邊形,再利用線面平行的判定定理證明.(2)取的中點(diǎn),連接,以為原點(diǎn),、、分別為、、軸建立空間直角坐標(biāo)系,則.,再分別求得平面和平面的一個法向量,利用面面角的向量公式求解.【詳解】(1)證明:如圖所示:取中點(diǎn),連接,易知,、分別為的中點(diǎn),∴,∴故四邊形為平行四邊形,∴,∵平面,平面,平面(2)取的中點(diǎn),連接,以為原點(diǎn),、、分別為、、軸建立如圖所示的空間直角坐標(biāo)系,如圖所示:則∴,設(shè)平面的法向量為,則,即,取,得,易知平面的一個法向量為,∴,∴二面角的余弦值為【點(diǎn)睛】本題主要考查線面平行的判定定理和面面角的向量求法,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.22、(1);(2)最大值為.【解析】(1)由拋物線焦點(diǎn)與準(zhǔn)線的距離即可得解;(2)設(shè),由平面向量的知識可得,進(jìn)而可得,再由斜率公式及基本不等式即可得解.【詳解】(1)拋物線的焦點(diǎn),準(zhǔn)線方程為,由題意,該拋物線焦點(diǎn)到準(zhǔn)線的距離為,所以該拋物線的方程為;(2)[方法一]:軌跡方程+基本不等式法設(shè),則,所以,由在拋物線上可得,即,所以直線的斜率,當(dāng)時,;當(dāng)時,,當(dāng)時,因?yàn)?,此時,當(dāng)且僅當(dāng),即時,等號成立;當(dāng)時,;綜上,直線斜率的最大值為.[方法二]:【最優(yōu)解】軌跡方程+數(shù)形結(jié)合法同方法一得到點(diǎn)Q的軌跡方程為設(shè)直線的方程為,則當(dāng)直線與拋物線相切時,其斜率k取到最值.聯(lián)立得,其判別式,解得,所以直線斜率的最大值為[方法三]:軌跡方程+換元求最值法同方法一得點(diǎn)Q的軌跡方程為設(shè)直線的斜率為k,則令,則的對稱軸為,所以.故直線斜率的最大值為[方法四]參數(shù)+基本不等式法由題可設(shè)因,所以于是,所以則直線的斜率為當(dāng)且僅
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年濟(jì)南北山糧庫有限公司公開招聘勞務(wù)派遣工作人員崗位備考題庫及答案詳解一套
- 2026年第十三師中級人民法院聘用制書記員招聘備考題庫及參考答案詳解1套
- 臨泉縣面向2026屆公費(fèi)師范畢業(yè)生招聘教師備考題庫完整參考答案詳解
- 企業(yè)采購管理制度
- 中學(xué)學(xué)生社團(tuán)活動經(jīng)費(fèi)管理執(zhí)行制度
- 中學(xué)教師職稱晉升制度
- 養(yǎng)老院收費(fèi)標(biāo)準(zhǔn)及退費(fèi)制度
- 2026年重慶醫(yī)科大學(xué)附屬康復(fù)醫(yī)院關(guān)于黨政辦公室黨建、宣傳干事、醫(yī)保辦工作人員招聘備考題庫及一套答案詳解
- 2026年龍巖市武平縣招聘動物防疫專員的備考題庫及參考答案詳解一套
- 交通設(shè)施安全檢測制度
- 半導(dǎo)體產(chǎn)業(yè)人才供需洞察報告 202511-獵聘
- 電梯救援安全培訓(xùn)課件
- 2025年青島市國企社會招聘筆試及答案
- 2026屆江西省撫州市臨川區(qū)第一中學(xué)高二上數(shù)學(xué)期末考試模擬試題含解析
- 云南省大理州2024-2025學(xué)年七年級上學(xué)期期末考試數(shù)學(xué)試卷(含解析)
- 物業(yè)管理法律法規(guī)與實(shí)務(wù)操作
- (16)普通高中體育與健康課程標(biāo)準(zhǔn)日常修訂版(2017年版2025年修訂)
- 電力工程施工組織措施
- 五年級數(shù)學(xué)上冊計(jì)算題專項(xiàng)練習(xí)
- 人工智能賦能制造業(yè)的變革
- 腹腔鏡下前列腺癌根治術(shù)護(hù)理查房課件
評論
0/150
提交評論