版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
河南省濮陽市臺前一高2026屆高一數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)函數(shù)f(x)=asinx+bcosx,其中a,b∈R,ab≠0,若f(x)≥f()對一切x∈R恒成立,則下列結(jié)論中正確的是()A.B.點是函數(shù)的一個對稱中心C.在上是增函數(shù)D.存在直線經(jīng)過點且與函數(shù)的圖象有無數(shù)多個交點2.已知直線,直線,則與之間的距離為()A. B.C. D.3.已知函數(shù),則下列結(jié)論錯誤的是()A.的一個周期為 B.的圖象關(guān)于直線對稱C.的一個零點為 D.在區(qū)間上單調(diào)遞減4.若函數(shù)的圖像向左平移個單位得到的圖像,則A. B.C. D.5.已知且,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.如圖,四邊形ABCD是平行四邊形,則12A.AB B.CDC.CB D.AD7.已知,,則下列不等式正確的是()A. B.C. D.8.已知的三個頂點、、及平面內(nèi)一點滿足,則點與的關(guān)系是()A.在的內(nèi)部 B.在的外部C.是邊上的一個三等分點 D.是邊上的一個三等分點9.將函數(shù)的圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向左平移個單位,所得函數(shù)圖象的一條對稱軸是()A. B.C. D.10.設(shè),則等于A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.為偶函數(shù),則___________.12.已知,,且,則的最小值為___________.13.已知函數(shù)是冪函數(shù),且在x∈(0,+∞)上遞減,則實數(shù)m=________14.若函數(shù)在區(qū)間上單調(diào)遞減,則實數(shù)的取值范圍是__________15.向量在邊長為1的正方形網(wǎng)格中的位置如圖所示,則__________16.已知函數(shù)在上單調(diào)遞減,則實數(shù)的取值范圍是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.求解下列問題(1)化簡(其中各字母均為正數(shù)):;(2)化簡并求值:18.已知函數(shù)fx=2sin(1)在用“五點法”作函數(shù)fx2x-0ππ3π2πx3π5π9πf0200完成上述表格,并在坐標(biāo)系中畫出函數(shù)y=fx在區(qū)間0,π(2)求函數(shù)fx(3)求函數(shù)fx在區(qū)間-π19.(1)求兩條平行直線3x+4y-6=0與ax+8y-4=0間的距離(2)求兩條垂直的直線2x+my-8=0和x-2y+1=0的交點坐標(biāo)20.有一圓與直線相切于點,且經(jīng)過點,求此圓的方程21.已知且滿足不等式.(1)求不等式;(2)若函數(shù)在區(qū)間有最小值為,求實數(shù)值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)f(x)≥f()對一切x∈R恒成立,那么x=取得最小值.結(jié)合周期判斷各選項即可【詳解】函數(shù)f(x)=asinx+bcosx=周期T=2π由題意x=取得最小值,a,b∈R,ab≠0,∴f()=0不正確;x=取得最小值,那么+=就是相鄰的對稱中心,∴點(,0)不是函數(shù)f(x)的一個對稱中心;因為x=取得最小值,根據(jù)正弦函數(shù)的性質(zhì)可知,f(x)在是減函數(shù)故選D【點睛】本題考查三角函數(shù)的性質(zhì)應(yīng)用,排除法求解,考查轉(zhuǎn)化思想以及計算能力2、D【解析】利用兩平行線間的距離公式即可求解.【詳解】直線的方程可化為,則與之間的距離故選:D3、B【解析】根據(jù)周期求出f(x)最小正周期即可判斷A;判斷是否等于1或-1即可判斷是否是其對稱軸,由此判斷B;判斷否為0即可判斷C;,根據(jù)復(fù)合函數(shù)單調(diào)性即可判斷f(x)單調(diào)性,由此判斷D.【詳解】函數(shù),最小正周期為故A正確;,故直線不是f(x)的對稱軸,故B錯誤;,則,∴C正確;,∴f(x)在上單調(diào)遞減,故D正確.故選:B.4、A【解析】函數(shù)的圖象向左平移個單位,得到的圖象對應(yīng)的函數(shù)為:本題選擇A選項.5、D【解析】根據(jù)充分、必要條件的知識確定正確選項.【詳解】“”時,若,則,不能得到“”.“”時,若,則,不能得到“”.所以“”是“”的既不充分也不必要條件.故選:D6、D【解析】由線性運算的加法法則即可求解.【詳解】如圖,設(shè)AC,BD交于點O,則12故選:D7、C【解析】利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性即可求解.【詳解】由為單調(diào)遞減函數(shù),則,為單調(diào)遞減函數(shù),則,為單調(diào)遞增函數(shù),則故.故選:C【點睛】本題考查了指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性比較指數(shù)式、對數(shù)式的大小,屬于基礎(chǔ)題.8、D【解析】利用向量的運算法則將等式變形,得到,據(jù)三點共線的充要條件得出結(jié)論【詳解】解:,,∴是邊上的一個三等分點故選:D【點睛】本題考查向量的運算法則及三點共線的充要條件,屬于基礎(chǔ)題9、D【解析】根據(jù)三角形函數(shù)圖像變換和解析式的關(guān)系即可求出變換后函數(shù)解析式,從而根據(jù)余弦函數(shù)圖像的性質(zhì)可求其對稱軸.【詳解】將函數(shù)的圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),則函數(shù)解析式變?yōu)?;向左平移個單位得,由余弦函數(shù)的性質(zhì)可知,其對稱軸一定經(jīng)過圖象的最高點或最低點,故對稱軸為:,k∈Z,k=1時,.故選:D.10、D【解析】由題意結(jié)合指數(shù)對數(shù)互化確定的值即可.【詳解】由題意可得:,則.本題選擇D選項.【點睛】本題主要考查對數(shù)與指數(shù)的互化,對數(shù)的運算性質(zhì)等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)偶函數(shù)判斷參數(shù)值,進而可得函數(shù)值.【詳解】由為偶函數(shù),得,,不恒為,,,,故答案為:.12、【解析】由已知湊配出積為定值,然后由基本不等式求得最小值【詳解】因為,,且,所以,當(dāng)且僅當(dāng),即時等號成立故答案為:13、2【解析】由冪函數(shù)的定義可得m2-m-1=1,得出m=2或m=-1,代入驗證即可.【詳解】是冪函數(shù),根據(jù)冪函數(shù)的定義和性質(zhì),得m2-m-1=1解得m=2或m=-1,當(dāng)m=2時,f(x)=x-3在(0,+∞)上是減函數(shù),符合題意;當(dāng)m=-1時,f(x)=x0=1在(0,+∞)上不是減函數(shù),所以m=2故答案為:2【點睛】本題考查了冪函數(shù)的定義,考查了理解辨析能力和計算能力,屬于基礎(chǔ)題目.14、【解析】本題等價于在上單調(diào)遞增,對稱軸,所以,得.即實數(shù)的取值范圍是點睛:本題考查復(fù)合函數(shù)的單調(diào)性問題.復(fù)合函數(shù)的單調(diào)性遵循“同增異減”的性質(zhì).所以本題的單調(diào)性問題就等價于在上單調(diào)遞增,為開口向上的拋物線單調(diào)性判斷,結(jié)合圖象即可得到答案15、3【解析】由題意可知故答案為316、【解析】根據(jù)分段函數(shù)的單調(diào)性,可知每段函數(shù)的單調(diào)性,以及分界點處的函數(shù)的的大小關(guān)系,即可列式求解.【詳解】因為分段函數(shù)在上單調(diào)遞減,所以每段都單調(diào)遞減,即,并且在分界點處需滿足,即,解得:.故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)結(jié)合指數(shù)運算求得正確答案.(2)結(jié)合對數(shù)運算求得正確答案.【小問1詳解】原式【小問2詳解】原式18、(1)答案見解析(2)單調(diào)遞增區(qū)間:-π8(3)-2,【解析】(1)利用給定的角依次求出對應(yīng)的三角函數(shù)值,進而填表,結(jié)合“五點法”畫出圖象即可;(2)根據(jù)正弦函數(shù)的單調(diào)增區(qū)間計算即可;(3)根據(jù)x的范圍求出2x-π4【小問1詳解】2x-0ππ3π2πxπ3π5π7π9πf020-20函數(shù)圖象如圖所示,【小問2詳解】令-π2+2kπ≤2x-得-π8+kπ≤x≤所以函數(shù)fx的單調(diào)遞增區(qū)間:-π8【小問3詳解】因為x∈-π4所以sin2x-當(dāng)2x-π4=-π2當(dāng)2x-π4=π4所以函數(shù)fx在區(qū)間-π419、(1)(2)(3,2)【解析】(1)根據(jù)兩平行線的距離公式得到兩平行線間的距離為;(2)聯(lián)立直線可求得交點坐標(biāo).解析:(1)由,得兩條直線的方程分別為3x+4y-6=0,6x+8y-4=0即3x+4y-2=0所以兩平行線間的距離為(2)由2-2m=0,得m=1由,得所以交點坐標(biāo)為(3,2)20、x2+y2-10x-9y+39=0【解析】法一:設(shè)出圓的方程,代入B點坐標(biāo),計算參數(shù),即可.法二:設(shè)出圓的方程,結(jié)合題意,建立方程,計算參數(shù),即可.法三:設(shè)出圓的一般方程,代入A,B坐標(biāo),建立方程,計算參數(shù),即可.法四:計算CA直線方程,計算BP方程,計算點P坐標(biāo),計算半徑和圓心坐標(biāo),建立圓方程,即可【詳解】法一:由題意可設(shè)所求的方程為,又因為此圓過點,將坐標(biāo)代入圓的方程求得,所以所求圓的方程為.法二:設(shè)圓的方程為,則圓心為,由,,,解得,所以所求圓的方程為.法三:設(shè)圓的方程為,由,,在圓上,得,解得,所以所求圓的方程為.法四:設(shè)圓心為,則,又設(shè)與圓的另一交點為,則的方程為,即.又因為,所以,所以直線的方程為.解方程組,得,所以所以圓心為的中點,半徑為.所以所求圓的方程為.【點睛】考查了圓方程的計算方法,關(guān)鍵在于結(jié)合題意建立方程組,計算參數(shù),即可,難度中等21、(1);(2).【解析】(1)運用指數(shù)不等式的解法,可得的范圍,再由對數(shù)不等式的解法,可得解集;(2)由題意可得函數(shù)在遞減
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公共設(shè)施管理與維護操作手冊(標(biāo)準(zhǔn)版)
- 車站人員考勤管理制度
- 財務(wù)管理制度
- 辦公室員工培訓(xùn)課程更新制度
- 辦公室出差與報銷管理制度
- 2026年錫山城發(fā)集團公開招聘5人備考題庫及完整答案詳解1套
- 人教版初中語文七下《駱駝祥子》基礎(chǔ)復(fù)習(xí)必刷題(附答案)
- 2026年葫蘆島市南票區(qū)政府專職消防隊員招聘37人備考題庫及參考答案詳解一套
- 關(guān)于選聘“警民聯(lián)調(diào)”室專職人民調(diào)解員20人的備考題庫參考答案詳解
- 2026年靈臺縣人民法院招聘備考題庫有答案詳解
- 宮內(nèi)節(jié)育器放置術(shù)
- 新制定《無障礙環(huán)境建設(shè)法》主題PPT
- 外墻涂料安全交底
- 期末復(fù)習(xí)主題班會
- 腫瘤病人的護理論文
- 道路交通基礎(chǔ)設(shè)施韌性提升
- 鋼結(jié)構(gòu)噴砂防腐施工方案
- 涪江上游水資源水環(huán)境調(diào)查評價
- 重慶市地圖ppt模板
- 室內(nèi)新增鋼樓梯施工方案
- TSG R7004-2013 壓力容器監(jiān)督檢驗規(guī)則
評論
0/150
提交評論