版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
湖北省孝感市八校2026屆高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列函數(shù)中定義域為,且在上單調(diào)遞增的是A. B.C. D.2.已知是銳角,那么是A.第一象限角 B.第一象限角或第二象限角C.第二象限角 D.小于的正角3.若,,三點共線,則()A. B.C. D.4.設(shè)命題p:,命題q:,則p是q成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.函數(shù)部分圖像如圖所示,則的值為()A. B.C. D.6.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)是()A. B.C. D.7.已知扇形的圓心角為,面積為8,則該扇形的周長為()A.12 B.10C. D.8.為了節(jié)約水資源,某地區(qū)對居民用水實行“階梯水價”制度:將居民家庭全年用水量(取整數(shù))劃分為三檔,水價分檔遞增,其標(biāo)準(zhǔn)如下:階梯居民家庭全年用水量(立方米)水價(元/立方米)其中水費(元/立方米)水資源費(元/立方米)污水處理費(元/立方米)第一階梯0-180(含)52.071.571.36第二階梯181-260(含)74.07第三階梯260以上96.07如該地區(qū)某戶家庭全年用水量為300立方米,則其應(yīng)繳納的全年綜合水費(包括水費、水資源費及污水處理費)合計為元.若該地區(qū)某戶家庭繳納的全年綜合水費合計為1180元,則此戶家庭全年用水量為()A.170立方米 B.200立方米C.220立方米 D.236立方米9.在新冠肺炎疫情初始階段,可以用指數(shù)模型::I(t)=ert(其中r為指數(shù)增長率)描述累計感染病例數(shù)I(t)隨時間t(單位:天)的變化規(guī)律.有學(xué)者基于已有數(shù)據(jù)估計出累計感染病例數(shù)增加1倍需要的時間約為2天,據(jù)此,在新冠肺炎疫情初始階段,指數(shù)增長率r的值約為()(參考數(shù)值:ln20.69)A.0.345 B.0.23C.0.69 D.0.83110.已知角頂點與原點重合,始邊與軸的正半軸重合,點在角的終邊上,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知且,則的最小值為______________12.已知一個銅質(zhì)的實心圓錐的底面半徑為6,高為3,現(xiàn)將它熔化后鑄成一個銅球(不計損耗),則該銅球的半徑是__________13.新高考選課走班“3+1+2”模式指的是:語文、數(shù)學(xué)、外語三門學(xué)科為必考科目,物理、歷史兩門科目必選一門,化學(xué)、生物、思想政治、地理四門科目選兩門.已知在一次選課過程中,甲、乙兩同學(xué)選擇科目之間沒有影響,在物理和歷史兩門科目中,甲同學(xué)選擇歷史的概率為,乙同學(xué)選擇物理的概率為,那么在物理和歷史兩門科目中甲、乙兩同學(xué)至少有1人選擇物理的概率為______14.已知是定義在R上的偶函數(shù),且在上為增函數(shù),,則不等式的解集為___________.15.在單位圓中,已知角的終邊與單位圓的交點為,則______16.已知函數(shù),若,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)在上的最大值與最小值之和為(1)求實數(shù)的值;(2)對于任意的,不等式恒成立,求實數(shù)的取值范圍18.在年初的時候,國家政府工作報告明確提出,年要堅決打好藍(lán)天保衛(wèi)戰(zhàn),加快解決燃煤污染問題,全面實施散煤綜合治理.實施煤改電工程后,某縣城的近六個月的月用煤量逐漸減少,月至月的用煤量如下表所示:月份用煤量(千噸)(1)由于某些原因,中一個數(shù)據(jù)丟失,但根據(jù)至月份數(shù)據(jù)得出樣本平均值是,求出丟失的數(shù)據(jù);(2)請根據(jù)至月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;(3)現(xiàn)在用(2)中得到的線性回歸方程中得到的估計數(shù)據(jù)與月月的實際數(shù)據(jù)的誤差來判斷該地區(qū)的改造項目是否達到預(yù)期,若誤差均不超過,則認(rèn)為該地區(qū)的改造已經(jīng)達到預(yù)期,否則認(rèn)為改造未達預(yù)期,請判斷該地區(qū)的煤改電項目是否達預(yù)期?(參考公式:線性回歸方程,其中)19.定義:若對定義域內(nèi)任意x,都有(a為正常數(shù)),則稱函數(shù)為“a距”增函數(shù)(1)若,(0,),試判斷是否為“1距”增函數(shù),并說明理由;(2)若,R是“a距”增函數(shù),求a的取值范圍;(3)若,(﹣1,),其中kR,且為“2距”增函數(shù),求的最小值20.已知函數(shù)(且).(1)當(dāng)時,,求的取值范圍;(2)若在上最小值大于1,求的取值范圍.21.已知函數(shù)(1)求函數(shù)導(dǎo)數(shù);(2)求函數(shù)的單調(diào)區(qū)間和極值點.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】先求解選項中各函數(shù)的定義域,再判定各函數(shù)的單調(diào)性,可得選項.【詳解】因為的定義域為,的定義域為,所以排除選項B,C.因為在是減函數(shù),所以排除選項A,故選D.【點睛】本題主要考查函數(shù)的性質(zhì),求解函數(shù)定義域時,熟記常見的類型:分式,偶次根式,對數(shù)式等,單調(diào)性一般結(jié)合初等函數(shù)的單調(diào)性進行判定,側(cè)重考查數(shù)學(xué)抽象的核心素養(yǎng).2、D【解析】根據(jù)是銳角求出的取值范圍,進而得出答案【詳解】因為是銳角,所以,故故選D.【點睛】本題考查象限角,屬于簡單題3、A【解析】先求出,從而可得關(guān)于的方程,故可求的值.【詳解】因為,,故,因為三點共線,故,故,故選:A.4、B【解析】先解不等式,然后根據(jù)充分條件和必要條件的定義判斷【詳解】由,得,所以命題p:,由,得,所以命題q:,因為當(dāng)時,不一定成立,當(dāng)時,一定成立,所以p是q成立的必要不充分條件,故選:B5、C【解析】根據(jù)的最值得出,根據(jù)周期得出,利用特殊點計算,從而得出的解析式,再計算.【詳解】由函數(shù)的最小值可知:,函數(shù)的周期:,則,當(dāng)時,,據(jù)此可得:,令可得:,則函數(shù)的解析式為:,.故選:C.【點睛】本題考查了三角函數(shù)的圖象與性質(zhì),屬于中檔題.6、C【解析】先還原幾何體為一直四棱柱,再根據(jù)柱體體積公式求結(jié)果.【詳解】根據(jù)三視圖可得幾何體為一個直四棱柱,高為,底面為直角梯形,上下底分別為、,梯形的高為,因此幾何體的體積為,選C.【點睛】先由幾何體的三視圖還原幾何體的形狀,再在具體幾何體中求體積或表面積等.7、A【解析】利用已知條件求出扇形的半徑,即可得解周長【詳解】解:設(shè)扇形的半徑r,扇形OAB的圓心角為4弧度,弧長為:4r,其面積為8,可得4r×r=8,解得r=2扇形的周長:2+2+8=12故選:A8、C【解析】根據(jù)用戶繳納的金額判定全年用水量少于260,利用第二檔的收費方式計算即可.【詳解】若該用戶全年用水量為260,則應(yīng)繳納元,所以該戶家庭的全年用水量少于260,設(shè)該戶家庭全年用水量為x,則應(yīng)繳納元,解得.故選:C9、A【解析】由題設(shè)可知第天感染病例數(shù)為,則第天的感染感染病例數(shù)為,由感染病例數(shù)增加1倍需要的時間約為2天,則,解出即可得出答案.【詳解】由題設(shè)可知第天感染病例數(shù)為,則第天的感染感染病例數(shù)為由感染病例數(shù)增加1倍需要的時間約為2天,則所以,即所以故選:A10、D【解析】先根據(jù)三角函數(shù)的定義求出,然后采用弦化切,代入計算即可【詳解】因為點在角的終邊上,所以故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、9【解析】因為且,所以取得等號,故函數(shù)的最小值為9.,答案為9.12、3【解析】設(shè)銅球的半徑為,則,得,故答案為.13、【解析】至少1人選擇物理即為1人選擇物理或2人都選擇物理,由題分別得到甲選擇物理的概率與乙選擇歷史的概率,進而求解即可.【詳解】由題,設(shè)“在物理和歷史兩門科目中甲、乙兩同學(xué)至少有1人選擇物理”事件,則包括有1人選擇物理,或2人都選擇物理,因為甲同學(xué)選擇歷史的概率為,則甲同學(xué)選擇物理的概率為,因為乙同學(xué)選擇物理的概率為,則乙同學(xué)選擇歷史的概率為,故,故答案為:14、【解析】根據(jù)題意求出函數(shù)的單調(diào)區(qū)間及所過的定點,進而解出不等式.【詳解】因為是定義在R上的偶函數(shù),且在上為增函數(shù),,所以函數(shù)在上為減函數(shù),.所以且在上為增函數(shù),,在上為減函數(shù),.所以的解集為:.故答案為:.15、【解析】先由三角函數(shù)定義得,再由正切的兩角差公式計算即可.【詳解】由三角函數(shù)的定義有,而.故答案為:16、【解析】根據(jù)題意,將分段函數(shù)分類討論計算可得答案【詳解】解:當(dāng)時,,即,解得,滿足題意;當(dāng)時,,即,解得,不滿足題意故.故答案為.【點睛】本題考查分段函數(shù)的計算,屬于基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)根據(jù)指對數(shù)函數(shù)的單調(diào)性得函數(shù)在上是單調(diào)函數(shù),進而得,解方程得;(2)根據(jù)題意,將問題轉(zhuǎn)化為對于任意的,恒成立,進而求函數(shù)的最值即可.【詳解】解:(1)因為函數(shù)在上的單調(diào)性相同,所以函數(shù)在上是單調(diào)函數(shù),所以函數(shù)在上的最大值與最小值之和為,所以,解得和(舍)所以實數(shù)的值為.(2)由(1)得,因為對于任意的,不等式恒成立,所以對于任意的,恒成立,當(dāng)時,為單調(diào)遞增函數(shù),所以,所以,即所以實數(shù)的取值范圍【點睛】本題考查指對數(shù)函數(shù)的性質(zhì),不等式恒成立求參數(shù)范圍,考查運算求解能力,回歸轉(zhuǎn)化思想,是中檔題.本題第二問解題的關(guān)鍵在于根據(jù)題意,將問題轉(zhuǎn)化為任意的,恒成立求解.18、(1)4(2)(3)該地區(qū)的煤改電項目已經(jīng)達到預(yù)期【解析】(1)根據(jù)平均數(shù)計算公式得,解得丟失數(shù)據(jù);(2)根據(jù)公式求,再根據(jù)求;(3)根據(jù)線性回歸方程求估計數(shù)據(jù),并與實際數(shù)據(jù)比較誤差,確定結(jié)論.試題解析:解:(1)設(shè)丟失的數(shù)據(jù)為,則得,即丟失的數(shù)據(jù)是.(2)由數(shù)據(jù)求得,由公式求得所以關(guān)于的線性回歸方程為(3)當(dāng)時,,同樣,當(dāng)時,,所以,該地區(qū)的煤改電項目已經(jīng)達到預(yù)期19、(1)見解析;(2);(3).【解析】(1)利用“1距”增函數(shù)的定義證明即可;(2)由“a距”增函數(shù)的定義得到在上恒成立,求出a的取值范圍即可;(3)由為“2距”增函數(shù)可得到在恒成立,從而得到恒成立,分類討論可得到的取值范圍,再由,可討論出的最小值【詳解】(1)任意,,因為,,所以,所以,即是“1距”增函數(shù)(2).因為是“距”增函數(shù),所以恒成立,因為,所以在上恒成立,所以,解得,因為,所以.(3)因為,,且為“2距”增函數(shù),所以時,恒成立,即時,恒成立,所以,當(dāng)時,,即恒成立,所以,得;當(dāng)時,,得恒成立,所以,得,綜上所述,得.又,因為,所以,當(dāng)時,若,取最小值為;當(dāng)時,若,取最小值.因為在R上是單調(diào)遞增函數(shù),所以當(dāng),的最小值為;當(dāng)時的最小值為,即.【點睛】本題考查了函數(shù)的綜合知識,考查了函數(shù)的單調(diào)性與最值,考查了恒成立問題,考查了分類討論思想的運用,屬于中檔題20、(1).(2).【解析】(1)當(dāng)時,得到函數(shù)的解析式,把不等式,轉(zhuǎn)化為,即可求解;(2)由在定義域內(nèi)單調(diào)遞減,分類討論,即可求解函數(shù)的最大值,得到答案.【詳解】(1)當(dāng)時,,,得.(2)在定義域內(nèi)單調(diào)遞減,當(dāng)時,函數(shù)在上單調(diào)遞減,,得.當(dāng)時,函數(shù)在上單調(diào)遞增,,不成立.綜上:.【點睛】本題主要考查了指數(shù)函數(shù)的圖象與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 46947-2025棉纖維術(shù)語、分類和編碼
- 2025年信息技術(shù)治理與安全管理手冊
- 公共交通節(jié)能減排制度
- 車站客運服務(wù)創(chuàng)新管理制度
- 辦公室員工培訓(xùn)資源管理制度
- 2026年某區(qū)某國企勞務(wù)派遣崗公開招聘10人備考題庫及完整答案詳解一套
- 2026年賀州市平桂區(qū)西灣社區(qū)衛(wèi)生服務(wù)中心招聘備考題庫附答案詳解
- 養(yǎng)老院消防安全檢查制度
- 養(yǎng)老院入住老人生活照料服務(wù)規(guī)范制度
- 2026年溫嶺市青少年宮招聘外聘專業(yè)教師備考題庫及完整答案詳解1套
- 酒店物業(yè)管理合同范本
- 醫(yī)療質(zhì)量改進中文書書寫能力提升路徑
- 血乳酸在急危重癥應(yīng)用的專家共2026
- STM32G4入門與電機控制實戰(zhàn)
- 2025年中共深圳市龍華區(qū)委黨校博士后公開招聘(廣東)筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 香港專業(yè)服務(wù)助力中國內(nèi)地企業(yè)出海成功案例實錄
- 人文護理:護理與人文關(guān)懷的國際化趨勢
- 2025年國家義務(wù)教育質(zhì)量監(jiān)測小學(xué)四年級勞動教育模擬測試題及答案
- 防止錯漏混培訓(xùn)課件
- 2025年及未來5年中國鐘表修理市場運行態(tài)勢及行業(yè)發(fā)展前景預(yù)測報告
- 2024集中式光伏電站場區(qū)典型設(shè)計手冊
評論
0/150
提交評論