版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省揚(yáng)州市邗江區(qū)三校2026屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)且傾斜角為銳角的直線與交于、兩點(diǎn),過(guò)線段的中點(diǎn)且垂直于的直線與的準(zhǔn)線交于點(diǎn),若,則的斜率為()A. B.C. D.2.若正三棱柱的所有棱長(zhǎng)都相等,D是的中點(diǎn),則直線AD與平面所成角的正弦值為A. B.C. D.3.設(shè)P為橢圓C:上一點(diǎn),,分別為左、右焦點(diǎn),且,則()A. B.C. D.4.2019年湖南等8省公布了高考改革綜合方案將采取“”模式即語(yǔ)文、數(shù)學(xué)、英語(yǔ)必考,考生首先在物理、歷史中選擇1門,然后在思想政治、地理、化學(xué)、生物中選擇2門,一名同學(xué)隨機(jī)選擇3門功課,則該同學(xué)選到歷史、地理兩門功課的概率為()A. B.C. D.5.過(guò)雙曲線的右焦點(diǎn)F作一條漸近線的垂線,垂足為M,且FM的中點(diǎn)A在雙曲線上,則雙曲線離心率e等于()A. B.C. D.6.過(guò)點(diǎn)且與橢圓有相同焦點(diǎn)的雙曲線方程為()A B.C. D.7.等差數(shù)列前項(xiàng)和,已知,,則的值是().A. B.C. D.8.某公司要建造一個(gè)長(zhǎng)方體狀的無(wú)蓋箱子,其容積為48m3,高為3m,如果箱底每1m2的造價(jià)為15元,箱壁每1m2造價(jià)為12元,則箱子的最低總造價(jià)為()A.72元 B.300元C.512元 D.816元9.下列說(shuō)法或運(yùn)算正確的是()A.B.用反證法證明“一個(gè)三角形至少有兩個(gè)銳角”時(shí)需設(shè)“一個(gè)三角形沒(méi)有銳角”C.“,”的否定形式為“,”D.直線不可能與圓相切10.若直線與圓相切,則()A. B.或2C. D.或11.雙曲線的離心率為,焦點(diǎn)到漸近線的距離為,則雙曲線的焦距等于A. B.C. D.12.拋物線的準(zhǔn)線方程為,則實(shí)數(shù)的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù),則函數(shù)在處切線的斜率為_(kāi)______________.14.若點(diǎn)為圓上的一個(gè)動(dòng)點(diǎn),則點(diǎn)到直線距離的最大值為_(kāi)_______15.若曲線在處的切線平行于x軸,則___________.16.由曲線圍成的圖形的面積為_(kāi)______________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,設(shè)橢圓()的離心率是e,定義直線為橢圓的“類準(zhǔn)線”,已知橢圓C的“類準(zhǔn)線”方程為,長(zhǎng)軸長(zhǎng)為8.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)O為坐標(biāo)原點(diǎn),A為橢圓C的右頂點(diǎn),直線l交橢圓C于E,F(xiàn)兩不同點(diǎn)(點(diǎn)E,F(xiàn)與點(diǎn)A不重合),且滿足,若點(diǎn)P滿足,求直線的斜率的取值范圍.18.(12分)已知橢圓C:的長(zhǎng)軸長(zhǎng)為,P是橢圓上異于頂點(diǎn)的一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),A為橢圓C的上頂點(diǎn),Q為PA的中點(diǎn),且直線PA與直線OQ的斜率之積恒為-2.(1)求橢圓C的方程;(2)若斜率為k且過(guò)上焦點(diǎn)F的直線l與橢圓C相交于M,N兩點(diǎn),當(dāng)點(diǎn)M,N到y(tǒng)軸距離之和最大時(shí),求直線l的方程.19.(12分)在等差數(shù)列中.,(1)求的通項(xiàng)公式:(2)記的前項(xiàng)和為,求滿足的的最大值20.(12分)已知在數(shù)列中,,且.(1)求,,并證明數(shù)列是等比數(shù)列;(2)求的通項(xiàng)公式及前n項(xiàng)和.21.(12分)已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.(Ⅰ)求數(shù)列{an}的通項(xiàng);(Ⅱ)求數(shù)列的前n項(xiàng)和Sn.22.(10分)如圖,在四棱錐中,為平行四邊形,,平面,且,點(diǎn)是的中點(diǎn).(1)求證:平面;(2)在線段上(不含端點(diǎn))是否存在一點(diǎn),使得二面角的余弦值為?若存在,確定的位置;若不存在,請(qǐng)說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】設(shè)直線的方程為,其中,設(shè)點(diǎn)、、,將直線的方程與拋物線的方程聯(lián)立,列出韋達(dá)定理,求出、,根據(jù)條件可求得的值,即可得出直線的斜率.【詳解】拋物線的焦點(diǎn)為,設(shè)直線的方程為,其中,設(shè)點(diǎn)、、,聯(lián)立可得,,,所以,,,,直線的斜率為,則直線的斜率為,所以,,因?yàn)?,則,因?yàn)?,解得,因此,直線的斜率為.故選:C.2、A【解析】建立空間直角坐標(biāo)系,得到相關(guān)點(diǎn)的坐標(biāo)后求出直線的方向向量和平面的法向量,借助向量的運(yùn)算求出線面角的正弦值【詳解】取AC的中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系設(shè)三棱柱的棱長(zhǎng)為2,則,∴設(shè)為平面的一個(gè)法向量,由故令,得設(shè)直線AD與平面所成角為,則,所以直線AD與平面所成角的正弦值為故選A【點(diǎn)睛】空間向量的引入為解決立體幾何問(wèn)題提供了較好的方法,解題時(shí)首先要建立適當(dāng)?shù)淖鴺?biāo)系,得到相關(guān)點(diǎn)的坐標(biāo)后借助向量的運(yùn)算,將空間圖形的位置關(guān)系或數(shù)量關(guān)系轉(zhuǎn)化為向量的運(yùn)算處理.在解決空間角的問(wèn)題時(shí),首先求出向量夾角的余弦值,然后再轉(zhuǎn)化為所求的空間角.解題時(shí)要注意向量的夾角和空間角之間的聯(lián)系和區(qū)別,避免出現(xiàn)錯(cuò)誤3、B【解析】根據(jù)橢圓的定義寫(xiě)出,再根據(jù)條件即可解得答案.【詳解】根據(jù)P為橢圓C:上一點(diǎn),則有,又,所以,故選:B.4、A【解析】先由列舉法計(jì)算出基本事件的總數(shù),然后再求出該同學(xué)選到歷史、地理兩門功課的基本事件的個(gè)數(shù),基本事件個(gè)數(shù)比即為所求概率.【詳解】由題意,記物理、歷史分別為、,從中選擇1門;記思想政治、地理、化學(xué)、生物為、、、,從中選擇2門;則該同學(xué)隨機(jī)選擇3門功課,所包含的基本事件有:,,,,,,,,,,,,共個(gè)基本事件;該同學(xué)選到歷史、地理兩門功課所包含的基本事件有:,,共個(gè)基本事件;該同學(xué)選到物理、地理兩門功課的概率為.故選:A.【點(diǎn)睛】本題考查求古典概型的概率,屬于基礎(chǔ)題型.5、A【解析】根據(jù)題意可表示出漸近線方程,進(jìn)而可知的斜率,表示出直線方程,求出的坐標(biāo)進(jìn)而求得A點(diǎn)坐標(biāo),代入雙曲線方程整理求得和的關(guān)系式,進(jìn)而求得離心率【詳解】:由題意設(shè)相應(yīng)的漸近線:,則根據(jù)直線的斜率為,則的方程為,聯(lián)立雙曲線漸近線方程求出,則,,則的中點(diǎn),把中點(diǎn)坐標(biāo)代入雙曲線方程中,即,整理得,即,求得,即離心率為,故答案為:6、D【解析】設(shè)雙曲線的方程為,再代點(diǎn)解方程即得解.【詳解】解:由得,所以橢圓的焦點(diǎn)為.設(shè)雙曲線的方程為,因?yàn)殡p曲線過(guò)點(diǎn),所以.所以雙曲線的方程為.故選:D7、C【解析】由題意,設(shè)等差數(shù)列的公差為,則,故,故,故選8、D【解析】設(shè)這個(gè)箱子的箱底的長(zhǎng)為xm,則寬為m,設(shè)箱子總造價(jià)為f(x)元,則f(x)=72(x)+240,由此利用均值不等式能求出箱子的最低總造價(jià)【詳解】設(shè)這個(gè)箱子的箱底的長(zhǎng)為xm,則寬為m,設(shè)箱子總造價(jià)為f(x)元,∴f(x)=15×16+12×3(2x)=72(x)+240≥144240=816,當(dāng)且僅當(dāng)x,即x=4時(shí),f(x)取最小值816元故選:D9、D【解析】對(duì)于A:可以解決;對(duì)于B:“一個(gè)三角形至少由兩個(gè)銳角”的反面是“只有一個(gè)銳角或沒(méi)有銳角”;對(duì)于C:全稱否定必須是全部否定;對(duì)于D:需要觀察出所給直線是過(guò)定點(diǎn)的.【詳解】A:,故錯(cuò)誤;B:“一個(gè)三角形至少由兩個(gè)銳角”的反面是“只有一個(gè)銳角或沒(méi)有銳角”,所以用反證法時(shí)應(yīng)假設(shè)只有一個(gè)銳角和沒(méi)有銳角兩種情況,故錯(cuò)誤;C:的否定形式是,故錯(cuò)誤;D:直線是過(guò)定點(diǎn)(-1,0),而圓,圓心為(2,0),半徑為4,定點(diǎn)(-1,0)到圓心的距離為2-(-1)=3<4,故定點(diǎn)在圓內(nèi),故正確;故選:D.10、D【解析】根據(jù)圓心到直線的距離等于半徑列方程即可求解.【詳解】由圓可得圓心,半徑,因?yàn)橹本€與圓相切,所以圓心到直線的距離,整理可得:,所以或,故選:D.11、D【解析】不妨設(shè)雙曲線方程為,則,即設(shè)焦點(diǎn)為,漸近線方程為則又解得.則焦距為.選:D12、B【解析】由題得,解方程即得解.【詳解】解:拋物線的準(zhǔn)線方程為,所以.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)導(dǎo)數(shù)的幾何意義求解即可.【詳解】解:因?yàn)?,所以,所以,所以函?shù)在處切線的斜率為故答案為:14、7【解析】根據(jù)給定條件求出圓C的圓心C到直線l的距離即可計(jì)算作答.【詳解】圓的圓心,半徑,點(diǎn)C到直線的距離,所以圓C上點(diǎn)P到直線l距離的最大值為.故答案為:715、【解析】求出導(dǎo)函數(shù)得到函數(shù)在時(shí)的導(dǎo)數(shù),由導(dǎo)數(shù)值為0求得a的值【詳解】由,得,則,∵曲線在點(diǎn)處的切線平行于x軸,∴,即.故答案為:16、【解析】當(dāng)時(shí),曲線表示的圖形為以為圓心,以為半徑的圓在第一象限的部分,所以面積為,根據(jù)對(duì)稱性,可知由曲線圍成的圖形的面積為考點(diǎn):本小題主要考查曲線表示的平面圖形的面積的求法,考查學(xué)生分類討論思想的運(yùn)用和運(yùn)算求解能力.點(diǎn)評(píng):解決此題的關(guān)鍵是看出所求圖形在四個(gè)象限內(nèi)是相同的,然后求出在一個(gè)象限內(nèi)的圖形的面積即可解決問(wèn)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)由題意列關(guān)于,,的方程,聯(lián)立方程組求得,,,則橢圓方程可求;(2)分直線軸與直線l不垂直于x軸兩種情況討論,當(dāng)直線l不垂直于x軸時(shí),設(shè),,直線l:(,),聯(lián)立直線方程與橢圓方程,消元由,得到,再列出韋達(dá)定理,由則,解得,再由,求出的坐標(biāo),則,再利用基本不等式求出取值范圍;【詳解】解:(1)由題意得:,,又,聯(lián)立以上可得:,,,橢圓C的方程為.(2)由(1)得,當(dāng)直線軸時(shí),又,聯(lián)立得,解得或,所以,此時(shí),直線的斜率為0.當(dāng)直線l不垂直于x軸時(shí),設(shè),,直線l:(,),聯(lián)立,整理得,依題意,即(*)且,.又,,,即,且t滿足(*),,,故直線的斜率,當(dāng)時(shí),,當(dāng)且僅當(dāng),即時(shí)取等號(hào),此時(shí);當(dāng)時(shí),,當(dāng)且僅當(dāng),即時(shí)取等號(hào),此時(shí);綜上,直線的斜率的取值范圍為.【點(diǎn)睛】本題考查利用待定系數(shù)法求橢圓方程,直線與橢圓的綜合應(yīng)用,屬于難題.18、(1)(2)【解析】(1)設(shè)點(diǎn),求出直線、直線的斜率相乘可得,結(jié)合可得答案;(2)設(shè)直線l的方程為與橢圓方程聯(lián)立,代入得,設(shè),再利用基本不等式可得答案.【小問(wèn)1詳解】由題意可得,,即,則,設(shè)點(diǎn),∵Q為的中點(diǎn),∴,∴直線斜率,直線的斜率,∴,又∵,∴,則,解得,∴橢圓C的方程為.【小問(wèn)2詳解】由(1)知,設(shè)直線l的方程為,聯(lián)立化簡(jiǎn)得,,設(shè),則,易知M,N到y(tǒng)軸的距離之和為,,設(shè),∴,當(dāng)且僅當(dāng)即時(shí)等號(hào)成立,所以當(dāng)時(shí)取得最大值,此時(shí)直線l的方程為.19、(1)(2)【解析】(1)根據(jù)等差數(shù)列的概念及通項(xiàng)公式可得基本量,進(jìn)而可得解.(2)利用等差數(shù)列求和公式計(jì)算,解不等式即可.【小問(wèn)1詳解】設(shè)等差數(shù)列的公差為,所以,解得,所以數(shù)列的通項(xiàng)公式為;【小問(wèn)2詳解】由(1)得,所以,解得,所以的最大值為.20、(1),,證明見(jiàn)解析(2),【解析】(1)根據(jù)遞推關(guān)系求出,,對(duì)遞推公式變形,即可得證;(2)結(jié)合(1)求得通項(xiàng)公式,分組求和.【小問(wèn)1詳解】因?yàn)?,且所以,,∵,∴,∵,∴,且,∴?shù)列是等比數(shù)列.【小問(wèn)2詳解】由(1)可知是以為首項(xiàng),以3為公比的等比數(shù)列,即,即;.21、(Ⅰ)(Ⅱ)【解析】本試題考查了等差數(shù)列與等比數(shù)列的概念以及等比數(shù)列的前n項(xiàng)和公式等基本知識(shí)(Ⅰ)由題設(shè)知公差由成等比數(shù)列得解得(舍去),故的通項(xiàng)(Ⅱ)由(Ⅰ)知,由等比數(shù)列前n項(xiàng)和公式得點(diǎn)評(píng):本試題題目條件給的比較清晰,直接.只要抓住概念就可以很好的解決22、(1)見(jiàn)解析(2)存在,【解析】(1)連接交于點(diǎn),由三角形中位線性質(zhì)知,由線面平行判定定理證得結(jié)論;(2)以為原點(diǎn)建立空間直角坐標(biāo)系,假設(shè),可用表示出點(diǎn)坐標(biāo);根據(jù)二面角的向量求法可根據(jù)二面角的余弦值構(gòu)造出關(guān)于的方程,從而解得結(jié)果.【詳解】(1)連接交于點(diǎn),連接,四邊形為平行四邊形,為中點(diǎn),又為中點(diǎn),,平面,平
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院老人康復(fù)設(shè)施使用管理制度
- 安全與急救課件下載
- 2026年高管面試人才梯隊(duì)建設(shè)考核練習(xí)題及解析
- 2026年南昌市煙草公司秋招網(wǎng)申---申論模板及核心解析
- 內(nèi)江2025年四川內(nèi)江市東興區(qū)招募特聘動(dòng)物防疫專員12人筆試歷年備考題庫(kù)附帶答案詳解
- 其他地區(qū)2025年新疆伊犁州直檢察機(jī)關(guān)招聘聘用制書(shū)記員26人筆試歷年典型考點(diǎn)題庫(kù)附帶答案詳解
- 廣東物業(yè)管理培訓(xùn)班課件
- 2026年茅臺(tái)筆試考試題及核心答案解析
- 佳木斯2025年“黑龍江人才周”佳木斯市急需緊缺專業(yè)技術(shù)人才引進(jìn)81人(第二階段)筆試歷年備考題庫(kù)附帶答案詳解
- 云和縣2025年浙江云和縣應(yīng)急管理局招聘應(yīng)急消防管理站專職編外人員19人筆試歷年參考題庫(kù)典型考點(diǎn)附帶答案詳解(3卷合一)
- DBJ50-T-442-2023建筑工程安全文明工地建設(shè)標(biāo)準(zhǔn)
- 提高連鑄機(jī)群錨地腳螺栓安裝一次合格率(修訂)4-11
- 生物-湖南省永州市2025年高考第二次模擬考試(永州二模)試題和答案
- UL858標(biāo)準(zhǔn)中文版-2019家用電爐十六版
- 骨科技能操作流程及評(píng)分標(biāo)準(zhǔn)
- 2021年ISO13485-2016醫(yī)療器械質(zhì)量管理體系內(nèi)審記錄
- 《上海人行道品質(zhì)提升技術(shù)指南》
- 上海市閔行區(qū)2023-2024學(xué)年六年級(jí)上學(xué)期期末語(yǔ)文試題【含答案】
- GB/T 24608-2023滾動(dòng)軸承及其商品零件檢驗(yàn)規(guī)則
- 型材知識(shí)介紹課件
- 骨折石膏外固定技術(shù)
評(píng)論
0/150
提交評(píng)論