版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
上海市十校2026屆數(shù)學(xué)高一上期末質(zhì)量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下面四個不等式中不正確的為A. B.C. D.2.已知是定義在上的奇函數(shù),且,若對任意,都有成立,則的值為()A.2022 B.2020C.2018 D.03.設(shè)集合M={x|x=×180°+45°,k∈Z},N={x|x=×180°+45°,k∈Z},那么()A.M=N B.N?MC.M?N D.M∩N=?4.已知在海中一孤島的周圍有兩個觀察站,且觀察站在島的正北5海里處,觀察站在島的正西方.現(xiàn)在海面上有一船,在點測得其在南偏西60°方向相距4海里處,在點測得其在北偏西30°方向,則兩個觀察站與的距離為A. B.C. D.5.已知且,則()A.有最小值 B.有最大值C.有最小值 D.有最大值6.已知函數(shù),則()A. B.C. D.7.函數(shù)的部分圖像如圖所示,則的值為()A. B.C. D.8.設(shè)是定義在R上的奇函數(shù),當(dāng)時,(b為常數(shù)),則的值為()A.﹣6 B.﹣4C.4 D.69.在三棱柱中,各棱長相等,側(cè)棱垂直于底面,點是側(cè)面的中心,則與平面所成角的大小是()A. B.C. D.10.已知函數(shù)若則的值為().A. B.或4C. D.或4二、填空題:本大題共6小題,每小題5分,共30分。11.若點P(1,﹣1)在圓x2+y2+x+y+k=0(k∈R)外,則實數(shù)k的取值范圍為_____12._____________13.已知滿足任意都有成立,那么的取值范圍是___________.14.中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點生活或配合其他民俗活動的民間藝術(shù).現(xiàn)有兩名剪紙藝人創(chuàng)作甲、乙兩種作品,他們在一天中的工作情況如圖所示,其中點Ai的橫、縱坐標(biāo)分別為第i名藝人上午創(chuàng)作的甲作品數(shù)和乙作品數(shù),點Bi的橫、縱坐標(biāo)分別為第i名藝人下午創(chuàng)作的甲作品數(shù)和乙作品數(shù),i=1,①該天上午第1名藝人創(chuàng)作的甲作品數(shù)比乙作品數(shù)少;②該天下午第1名藝人創(chuàng)作的乙作品數(shù)比第2名藝人創(chuàng)作的乙作品數(shù)少;③該天第1名藝人創(chuàng)作的作品總數(shù)比第2名藝人創(chuàng)作的作品總數(shù)少;④該天第2名藝人創(chuàng)作的作品總數(shù)比第1名藝人創(chuàng)作的作品總數(shù)少.其中所有正確結(jié)論序號是___________.15.已知函數(shù)若存在實數(shù)使得函數(shù)的值域為,則實數(shù)的取值范圍是__________16.已知函數(shù),則的值為_________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)對任意實數(shù)x,y滿足,,當(dāng)時,判斷在R上的單調(diào)性,并證明你的結(jié)論是否存在實數(shù)a使f
成立?若存在求出實數(shù)a;若不存在,則說明理由18.已知函數(shù)(Ⅰ)當(dāng)時,求在區(qū)間上的值域;(Ⅱ)當(dāng)時,是否存在這樣的實數(shù)a,使方程在區(qū)間內(nèi)有且只有一個根?若存在,求出a的取值范圍;若不存在,請說明理由19.已知函數(shù),(1)求在上的最小值;(2)記集合,,若,求的取值范圍.20.已知,(1)求的值;(2)求的值21.已知函數(shù),函數(shù)為R上的奇函數(shù),且.(1)求的解析式:(2)判斷在區(qū)間上的單調(diào)性,并用定義給予證明:(3)若的定義域為時,求關(guān)于x的不等式的解集.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】A,利用三角函數(shù)線比較大?。籅,取中間值1和這兩個數(shù)比較;C,利用對數(shù)函數(shù)圖象比較這兩個數(shù)的大小;D,取中間值1和這兩個數(shù)比較【詳解】解:A,如圖,利用三角函數(shù)線可知,所對的弧長為,,∴,A對;B,由于,B錯;C,如圖,,則,C對;D,,D對;故選:B【點睛】本題主要考查比較兩個數(shù)的大小,考查三角函數(shù)線的作用,考查指對數(shù)式的大小,屬于基礎(chǔ)題2、D【解析】利用條件求出的周期,然后可得答案.【詳解】因為是定義在上的奇函數(shù),且,所以,所以,所以即的周期為4,所以故選:D3、C【解析】變形表達(dá)式為相同的形式,比較可得【詳解】由題意可即為的奇數(shù)倍構(gòu)成的集合,又,即為的整數(shù)倍構(gòu)成的集合,,故選C【點睛】本題考查集合的包含關(guān)系的判定,變形為同樣的形式比較是解決問題的關(guān)鍵,屬基礎(chǔ)題4、D【解析】畫出如下示意圖由題意可得,,又,所以A,B,C,D四點共圓,且AC為直徑、在中,,由余弦定理得,∴∴(其中為圓的半徑).選D5、A【解析】根據(jù),變形為,再利用不等式的基本性質(zhì)得到,進而得到,然后由,利用基本不等式求解.【詳解】因為,所以,所以,所以,所以,所以,當(dāng)且僅當(dāng)時取等號,故選:A.【點睛】思路點睛:本題思路是利用分離常數(shù)法轉(zhuǎn)化為,再由,利用不等式的性質(zhì)構(gòu)造,再利用基本不等式求解.6、A【解析】由題中條件,推導(dǎo)出,,,,由此能求出的值【詳解】解:函數(shù),,,,,故選A【點睛】本題考查函數(shù)值的求法,考查函數(shù)性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題7、C【解析】根據(jù)的最值得出,根據(jù)周期得出,利用特殊點計算,從而得出的解析式,再計算.【詳解】由函數(shù)的最小值可知:,函數(shù)的周期:,則,當(dāng)時,,據(jù)此可得:,令可得:,則函數(shù)的解析式為:,.故選:C.【點睛】本題考查了三角函數(shù)的圖象與性質(zhì),屬于中檔題.8、B【解析】根據(jù)函數(shù)是奇函數(shù),可得,求得,結(jié)合函數(shù)的解析式即可得出答案.【詳解】解:因為是定義在R上的奇函數(shù),當(dāng)時,,,解得所以.故選:B.9、C【解析】如圖,取中點,則平面,故,因此與平面所成角即為,設(shè),則,,即,故,故選:C.10、B【解析】利用分段討論進行求解.【詳解】當(dāng)時,,(舍);當(dāng)時,,或(舍);當(dāng)時,,;綜上可得或.故選:B.【點睛】本題主要考查分段函數(shù)的求值問題,側(cè)重考查分類討論的意識.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】首先把圓的一般方程化為標(biāo)準(zhǔn)方程,點在圓外,則圓心到直線的距離,從而得解.【詳解】∵圓標(biāo)準(zhǔn)方程為,∴圓心坐標(biāo)(,),半徑r,若點(1,﹣1)在圓外,則滿足k,且k>0,即﹣2<k,即實數(shù)k的取值范圍是(﹣2,).故答案為:(﹣2,)【點睛】本題考查根據(jù)直線與圓的位置關(guān)系求參數(shù)的取值范圍,屬于基礎(chǔ)題.12、【解析】利用指數(shù)與對數(shù)的運算性質(zhì),進行計算即可【詳解】.【點睛】本題考查了指數(shù)與對數(shù)的運算性質(zhì),需要注意,屬于基礎(chǔ)題13、【解析】由題意可知,分段函數(shù)在上單調(diào)遞減,因此分段函數(shù)的每一段都是單調(diào)遞減,且左邊一段的最小值不小于右邊的最大值,即可得到實數(shù)的取值范圍.【詳解】由任意都有成立,可知函數(shù)在上單調(diào)遞減,又因,所以,解得.故答案為:.14、①②④【解析】根據(jù)點的坐標(biāo)的意義結(jié)合圖形逐個分析判斷即可【詳解】對于①,由題意可知,A1的橫、縱坐標(biāo)分別為第1名藝人上午創(chuàng)作的甲作品數(shù)和乙作品數(shù),由圖可知A1的橫坐標(biāo)小于縱坐標(biāo),所以該天上午第對于②,由題意可知,B1的縱坐標(biāo)為第1名藝人下午創(chuàng)作的乙作品數(shù),B2的縱坐標(biāo)為第2名藝人下午創(chuàng)作的乙作品數(shù),由圖可知B1的縱坐標(biāo)小于B2的縱坐標(biāo),所以該天下午第對于③,④,由圖可知,A1,B1的橫、縱坐標(biāo)之和大于A2故答案為:①②④15、【解析】當(dāng)時,函數(shù)為減函數(shù),且在區(qū)間左端點處有令,解得令,解得的值域為,當(dāng)時,fx=x在,上單調(diào)遞增,在上單調(diào)遞減,從而當(dāng)時,函數(shù)有最小值,即為函數(shù)在右端點的函數(shù)值為的值域為,則實數(shù)的取值范圍是點睛:本題主要考查的是分段函數(shù)的應(yīng)用.當(dāng)時,函數(shù)為減函數(shù),且在區(qū)間左端點處有,當(dāng)時,在,上單調(diào)遞增,在上單調(diào)遞減,從而當(dāng)時,函數(shù)有最小值,即為,函數(shù)在右端點的函數(shù)值為,結(jié)合圖象即可求出答案16、【解析】,填.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)在上單調(diào)遞增,證明見解析;(2)存在,.【解析】(1)令,則,根據(jù)已知中函數(shù)對任意實數(shù)滿足,當(dāng)時,易證得,由增函數(shù)的定義,即可得到在上單調(diào)遞增;(2)由已知中函數(shù)對任意實數(shù)滿足,,利用“湊”的思想,我們可得,結(jié)合(1)中函數(shù)在上單調(diào)遞增,我們可將轉(zhuǎn)化為一個關(guān)于的一元二次不等式,解不等式即可得到實數(shù)的取值范圍試題解析:(1)設(shè),∴,又,∴即,∴在上單調(diào)遞增(2)令,則,∴∴,∴,即,又在上單調(diào)遞增,∴,即,解得,故存在這樣的實數(shù),即考點:1.抽象函數(shù)及其應(yīng)用;2.函數(shù)單調(diào)性的判斷與證明;3.解不等式.【方法點睛】本題主要考查的是抽象函數(shù)及其應(yīng)用,函數(shù)單調(diào)性的判斷與證明,屬于中檔題,此類題目解題的核心思想就是對抽象函數(shù)進行變形處理,然后利用定義變形求出的大小關(guān)系,進而得到函數(shù)的單調(diào)性,對于解不等式,需要經(jīng)常用到的利用“湊”的思想,對已知的函數(shù)值進行轉(zhuǎn)化,求出常數(shù)所對的函數(shù)值,從而利用前面證明的函數(shù)的單調(diào)性進行轉(zhuǎn)化為關(guān)于的一元二次不等式,因此正確對抽象函數(shù)關(guān)系的變形以及利用“湊”的思想,對已知的函數(shù)值進行轉(zhuǎn)化是解決此類問題的關(guān)鍵.18、(Ⅰ);(Ⅱ)存在,.【解析】(Ⅰ)先把代入解析式,再求對稱軸,進而得到函數(shù)的單調(diào)性,即可求出值域;(Ⅱ)函數(shù)在區(qū)間內(nèi)有且只有一個零點,轉(zhuǎn)化為函數(shù)和的圖象在內(nèi)有唯一交點,根據(jù)中是否為零,分類討論,結(jié)合函數(shù)的性質(zhì),即可求解.【詳解】(Ⅰ)當(dāng)時,,對稱軸為:,所以函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增;則,所以在區(qū)間上的值域為;(Ⅱ)由,令,可得,即,令,,,函數(shù)在區(qū)間內(nèi)有且只有一個零點,等價于兩個函數(shù)與的圖象在內(nèi)有唯一交點;①當(dāng)時,在上遞減,在上遞增,而,所以函數(shù)與的圖象在內(nèi)有唯一交點.②當(dāng)時,圖象開口向下,對稱軸為,在上遞減,在上遞增,與的圖象在內(nèi)有唯一交點,當(dāng)且僅當(dāng),即,解得,所以.③當(dāng)時,圖象開口向上,對稱軸為,在上遞減,在上遞增,與的圖象在內(nèi)有唯一交點,,即,解得,所以.綜上,存在實數(shù),使函數(shù)于在區(qū)間內(nèi)有且只有一個點.【點睛】關(guān)鍵點睛:本題主要考查了求一元二次函數(shù)的值域問題,以及函數(shù)與方程的綜合應(yīng)用,其中解答中把函數(shù)的零點問題轉(zhuǎn)化為兩個函數(shù)圖象的交點個數(shù)問題,結(jié)合函數(shù)的性質(zhì)求解是解答的關(guān)鍵,著重考查轉(zhuǎn)化思想,以及推理與運算能力.19、(1)答案見解析(2)【解析】(1)按對稱軸與區(qū)間的相對位置關(guān)系,分三種情況討論求最小值;(2)分與解不等式,再分析的情況即可求解.【小問1詳解】解:(1)由,拋物線開口向上,對稱軸為,在上的最小值需考慮對稱軸與區(qū)間的位置關(guān)系.(i)當(dāng)時,;(ii)當(dāng)時,;(ⅲ)當(dāng)時,【小問2詳解】(2)解不等式,即,可得:當(dāng)時,不等式的解為;當(dāng)時,不等式的解為.(i)當(dāng)時,要使不等式的解集與有交集,由得:,此時對稱軸為,∴只需,即,得.所以此時(ii)當(dāng)時,要使不等式的解集與有交集,由得:,此時對稱軸為,∴只需,即,得.所以此時無解.綜上所述,的取值范圍.20、(Ⅰ);(Ⅱ)【解析】解:(Ⅰ)由sin﹣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年招聘廣州南沙人力資源發(fā)展有限公司招聘編外工作人員備考題庫政府編外有答案詳解
- 2026年汕頭市金平區(qū)婦幼保健院招聘編外人員備考題庫及1套參考答案詳解
- 2026年某國有企業(yè)招聘工作人員備考題庫帶答案詳解
- 2026年眉山天府新區(qū)第四幼兒園招聘廣告?zhèn)淇碱}庫及1套完整答案詳解
- 2026年浙江省中醫(yī)院、浙江中醫(yī)藥大學(xué)附屬第一醫(yī)院(第一臨床醫(yī)學(xué)院)公開招聘人員備考題庫及完整答案詳解一套
- 企業(yè)招聘與選拔標(biāo)準(zhǔn)制度
- 2026年鄰水縣公開考調(diào)公務(wù)員21人備考題庫及一套完整答案詳解
- 養(yǎng)老院醫(yī)療設(shè)施管理制度
- 2026年葫蘆島市市直部分事業(yè)單位公開招聘高層次人才備考題庫完整參考答案詳解
- 企業(yè)員工培訓(xùn)與個人發(fā)展計劃制度
- 2026-2031中國釀酒設(shè)備行業(yè)市場現(xiàn)狀調(diào)查及投資前景研判報告
- KET考試必背核心短語(按場景分類)
- 2025四川產(chǎn)業(yè)振興基金投資集團有限公司應(yīng)屆畢業(yè)生招聘9人筆試歷年難易錯考點試卷帶答案解析2套試卷
- 2025年智能眼鏡行業(yè)分析報告及未來發(fā)展趨勢預(yù)測
- 繪本閱讀應(yīng)用于幼小銜接的實踐研究
- 精防醫(yī)生考試試題及答案
- 天然氣制氫項目可行性研究報告
- DB11T 1493-2025 城鎮(zhèn)道路雨水口技術(shù)規(guī)范
- 重慶水利安全員c證考試題庫大全及答案解析
- 2025??低曒p網(wǎng)管交換機使用手冊
- 2025年中國臺球桿行業(yè)市場全景分析及前景機遇研判報告
評論
0/150
提交評論