版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
陜西省藍(lán)田縣2026屆高二上數(shù)學(xué)期末調(diào)研模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點、為橢圓的左、右焦點,若點為橢圓上一動點,則使得的點的個數(shù)為()A. B.C. D.不能確定2.函數(shù)的導(dǎo)函數(shù)為,若已知圖象如圖,則下列說法正確的是()A.存在極大值點 B.在單調(diào)遞增C.一定有最小值 D.不等式一定有解3.經(jīng)過點A(0,-3)且斜率為2的直線方程為()A. B.C. D.4.已知等差數(shù)列的公差為,則“”是“數(shù)列為單調(diào)遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件5.如圖,雙曲線的左,右焦點分別為,,過作直線與C及其漸近線分別交于Q,P兩點,且Q為的中點.若等腰三角形的底邊的長等于C的半焦距.則C的離心率為()A. B.C. D.6.橢圓以坐標(biāo)軸為對稱軸,經(jīng)過點,且長軸長是短軸長的倍,則橢圓的標(biāo)準(zhǔn)方程為()A. B.C.或 D.或7.若函數(shù)的圖象如圖所示,則函數(shù)的導(dǎo)函數(shù)的圖象可能是()A. B.C D.8.如圖,在四面體中,,,,點為的中點,,則()A. B.C. D.9.已知是和的等比中項,則圓錐曲線的離心率為()A. B.或2C. D.或10.已知長方體中,,,則平面與平面所成的銳二面角的余弦值為()A. B.C. D.11.已知是上的單調(diào)增函數(shù),則的取值范圍是A.﹣1b2 B.﹣1b2C.b﹣2或b2 D.b﹣1或b212.已知函數(shù),則的單調(diào)遞增區(qū)間為().A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,,,,則__________.14.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層燈數(shù)為_____________15.將全體正整數(shù)排成一個三角形數(shù)陣:按照以上排列的規(guī)律,第行從左向右的第2個數(shù)為____________.16.若圓和圓的公共弦所在的直線方程為,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓經(jīng)過點和,且圓心在直線上.(1)求圓的方程;(2)過原點的直線與圓交于M,N兩點,若的面積為,求直線的方程.18.(12分)已知數(shù)列滿足,,數(shù)列前項和為.(1)求數(shù)列,的通項公式;(2)表示不超過的最大整數(shù),如,設(shè)的前項和為,令,求證:.19.(12分)如圖,OP為圓錐的高,AB為底面圓O的直徑,C為圓O上一點,并且,E為劣弧上的一點,且,.(1)若E為劣弧的中點,求證:平面POE;(2)若E為劣弧的三等分點(靠近點),求平面PEO與平面PEB的夾角的余弦值.20.(12分)設(shè)函數(shù).(1)若在點處的切線為,求a,b的值;(2)求的單調(diào)區(qū)間.21.(12分)如圖,在四棱錐中,底面,,是的中點,,.(1)證明:;(2)求直線與平面所成角的正弦值.22.(10分)已知圓C的圓心C在直線上,且與直線相切于點.(1)求圓C的方程;(2)過點的直線與圓C交于兩點,線段的中點為M,直線與直線的交點為N.判斷是否為定值.若是,求出這個定值,若不是,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用余弦定理結(jié)合橢圓的定義可求得、,即可得出結(jié)論.【詳解】在橢圓中,,,,則,,可得,所以,,解得,此時點位于橢圓短軸的頂點.因此,滿足條件的點的個數(shù)為.故選:B.2、C【解析】根據(jù)圖象可得的符號,從而可得的單調(diào)區(qū)間,再對選項進(jìn)行逐一分析判斷正誤得出答案.【詳解】由所給的圖象,可得當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,可得在遞減,遞增;在遞減,在遞增,B錯誤,且知,所以存在極小值和,無極大值,A錯誤,同時無論是否存在,可得出一定有最小值,但是最小值不一定為負(fù)數(shù),故C正確,D錯誤.故選:C.3、A【解析】直接代入點斜式方程求解即可詳解】因為直線經(jīng)過點且斜率為2,所以直線的方程為,即,故選:4、C【解析】利用等差數(shù)列的定義和數(shù)列單調(diào)性的定義判斷可得出結(jié)論.【詳解】若,則,即,此時,數(shù)列為單調(diào)遞增數(shù)列,即“”“數(shù)列為單調(diào)遞增數(shù)列”;若等差數(shù)列為單調(diào)遞增數(shù)列,則,即“”“數(shù)列為單調(diào)遞增數(shù)列”.因此,“”是“數(shù)列為單調(diào)遞增數(shù)列”的充分必要條件.故選:C.5、C【解析】先根據(jù)等腰三角形的性質(zhì)得,再根據(jù)雙曲線定義以及勾股定理列方程,解得離心率.【詳解】連接,由為等腰三角形且Q為的中點,得,由知.由雙曲線的定義知,在中,,(負(fù)值舍去)故選:C【點睛】本題考查雙曲線的定義、雙曲線的離心率,考查基本分析求解能力,屬基礎(chǔ)題.6、C【解析】分情況討論焦點所在位置及橢圓方程.【詳解】當(dāng)橢圓的焦點在軸上時,由題意過點,故,,橢圓方程為,當(dāng)橢圓焦點在軸上時,,,橢圓方程為,故選:C.7、C【解析】由函數(shù)的圖象可知其單調(diào)性情況,再由導(dǎo)函數(shù)與原函數(shù)的關(guān)系即可得解.【詳解】由函數(shù)的圖象可知,當(dāng)時,從左向右函數(shù)先增后減,故時,從左向右導(dǎo)函數(shù)先正后負(fù),故排除AB;當(dāng)時,從左向右函數(shù)先減后增,故時,從左向右導(dǎo)函數(shù)先負(fù)后正,故排除D.故選:C.8、B【解析】利用插點的方法,將歸結(jié)到題目中基向量中去,注意中線向量的運用.【詳解】.故選:B.9、B【解析】由等比中項的性質(zhì)可得,分別計算曲線的離心率.【詳解】由是和的等比中項,可得,當(dāng)時,曲線方程為,該曲線為焦點在軸上的橢圓,離心率,當(dāng)時,曲線方程為,該曲線為焦點在軸上的雙曲線,離心率,故選:B.10、A【解析】建立空間直角坐標(biāo)系,求得平面的一個法向量為,易知平面的一個法向量為,由求解.【詳解】建立如圖所示空間直角坐標(biāo)系:則,所以,設(shè)平面的一個法向量為,則,即,令,則,易知平面的一個法向量為,所以,所以平面與平面所成的銳二面角的余弦值為,故選:A11、A【解析】利用三次函數(shù)的單調(diào)性,通過其導(dǎo)數(shù)進(jìn)行研究,求出導(dǎo)數(shù),利用其導(dǎo)數(shù)恒大于0即可解決問題【詳解】∵∴∵函數(shù)是上的單調(diào)增函數(shù)∴在上恒成立∴,即.∴故選A.【點睛】可導(dǎo)函數(shù)在某一區(qū)間上是單調(diào)函數(shù),實際上就是在該區(qū)間上(或)(在該區(qū)間的任意子區(qū)間都不恒等于0)恒成立,然后分離參數(shù),轉(zhuǎn)化為求函數(shù)的最值問題,從而獲得參數(shù)的取值范圍,本題是根據(jù)相應(yīng)的二次方程的判別式來進(jìn)行求解.12、D【解析】利用導(dǎo)數(shù)分析函數(shù)單調(diào)性【詳解】的定義域為,,令,解得故的單調(diào)遞增區(qū)間為故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知在中利用余弦定理可得的值,可求,可得,即可得解的值【詳解】解:因為在中,,,,所以由余弦定理可得,所以,即,則故答案為:14、3【解析】分析:設(shè)塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,利用等比數(shù)列前n項和公式能求出結(jié)果詳解:設(shè)塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,∴S7==381,解得a1=3.故答案為3.點睛:本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力.15、【解析】通過觀察、分析、歸納,找出規(guī)律運算求解即可【詳解】前行共有正整數(shù)個,即個,因此第行第個數(shù)是全體正整數(shù)中第個,即為故答案為:16、【解析】由兩圓公共弦方程,將兩圓方程相減得到,結(jié)合已知列方程組求、,即可得答案.【詳解】由題設(shè),兩圓方程相減可得:,即為公共弦,∴,可得,∴.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)直線的方程為或或【解析】(1)由弦的中垂線與直線的交點為圓心即可求解;(2)由,可得或,進(jìn)而有或,顯然直線斜率存在,設(shè)直線,由點到直線的距離公式求出的值即可得答案.【小問1詳解】解:設(shè)弦的中點為,則有,因為,所以直線,所以直線的中垂線為,則圓心在直線上,且在直線上,聯(lián)立方程解得圓心,則圓的半徑為,所以圓方程為;【小問2詳解】解:設(shè)圓心到直線的距離為,因為,所以或,所以或,顯然直線斜率存在,所以設(shè)直線,則或,解得或或,故直線的方程為或或.18、(1),(2)證明見解析【解析】(1)利用累加法求通項公式,利用通項公式與前n項和公式的關(guān)系可求的通項公式;(2)求出并判斷其范圍,求出,利用裂項相消法求的前n項和即可證明.【小問1詳解】由題可知,當(dāng)n≥2時,=當(dāng)n=1時,也符合上式,∴;當(dāng)時,,當(dāng)n=1時,也符合上式,∴;【小問2詳解】由(1)知,∴,∵,;∵,,,,,∴設(shè)為數(shù)列的前n項和,則.19、(1)證明見解析(2)【解析】(1)推導(dǎo)出平面,,,由此能證明平面(2)推導(dǎo)出,,以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值【小問1詳解】證明:為圓錐的高,平面,又平面,,為劣弧的中點,,,平面,平面【小問2詳解】解:解:為劣弧的三等分點(靠近點,為底面圓的直徑,為圓上一點,并且,,以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系,,0,,,0,,,,,,0,,,3,,0,,,,,,,,,3,設(shè)平面的法向量,,,則,取,得,,,設(shè)平面的法向量,,,則,取,得,1,,設(shè)二面角的平面角為,則,二面角的余弦值為20、(1),;(2)答案見解析.【解析】(1)已知切線求方程參數(shù),第一步求導(dǎo),切點在曲線,切點在切線,切點處的導(dǎo)數(shù)值為切線斜率.(2)第一步定義域,第二步求導(dǎo),第三步令導(dǎo)數(shù)大于或小于0,求解析,即可得到答案.【小問1詳解】的定義域為,,因為在點處的切線為,所以,所以;所以把點代入得:.即a,b的值為:,.【小問2詳解】由(1)知:.①當(dāng)時,在上恒成立,所以在單調(diào)遞減;②當(dāng)時,令,解得:,列表得:x-0+單調(diào)遞減極小值單調(diào)遞增所以,時,的遞減區(qū)間為,單增區(qū)間為.綜上所述:當(dāng)時,在單調(diào)遞減;當(dāng)時,的遞減區(qū)間為,單增區(qū)間為.【點睛】導(dǎo)函數(shù)中得切線問題第一步求導(dǎo),第二步列切點在曲線,切點在切線,切點處的導(dǎo)數(shù)值為切線斜率這三個方程,可解切線相關(guān)問題.21、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系,分別求出向量和,證明即可;(2)先求出和平面的法向量,然后利用公式求出,則直線與平面所成角的正弦值即為.【小問1詳解】證明:∵,,∴△≌△,∴,設(shè),在△中,由余弦定理得,即,則,即,,連接交于點,分別以,為軸、軸,過作軸,建立如圖空間直角坐標(biāo)系,則,,,,,,的中點,則,,∵,∴.【小問2詳解】由(1)可知,,,,設(shè)平面的法向量為,則,即,令,則,即,則,記直線與平面所成角為,.22、(1)(2)【解析】(1)設(shè)過點且與直線垂直的直線為,將代入直線方程,即可求出,再與求交點坐標(biāo),得到圓心坐標(biāo),再求出半徑,即可得解;(2)分直線的斜率存在與不存在兩種情況討論,當(dāng)斜率不存在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物流配送車輛運輸安全管理
- 物業(yè)管理法律法規(guī)與實務(wù)(標(biāo)準(zhǔn)版)
- 標(biāo)后管理制度
- 辦案安全制度
- 2026年溫州大學(xué)商學(xué)院臨聘工作人員招聘備考題庫及參考答案詳解一套
- 2026年永康市中醫(yī)院兒童康復(fù)治療師招聘備考題庫及參考答案詳解
- 初中語文七下必考名著《駱駝祥子》各章節(jié)重點考察題
- 2026年青海物產(chǎn)爆破技術(shù)服務(wù)有限公司招聘備考題庫完整參考答案詳解
- 2026年某三甲醫(yī)院招聘后勤輔助崗備考題庫及參考答案詳解一套
- 安全警示周培訓(xùn)課件
- 頸部腫塊課件
- 考查課程考核方案
- 2023年鄭州公用事業(yè)投資發(fā)展集團有限公司招聘筆試模擬試題及答案解析
- (通用版)漢字聽寫大會競賽題庫(含答案)
- GB∕T 20973-2020 膨潤土-行業(yè)標(biāo)準(zhǔn)
- 婦幼保健院工作制度(崗位職責(zé)252項)
- 盡調(diào)模范:渾水做空瑞幸的報告(中文版)
- 燃?xì)夤艿滥甓葯z驗報告
- (完整版)外研版英語初二下冊單詞表
- 口腔扁平苔蘚PPT醫(yī)學(xué)課件
- 《設(shè)計概論》教案2022
評論
0/150
提交評論