2026屆遼寧省遼源市金鼎高級中學數(shù)學高二上期末監(jiān)測模擬試題含解析_第1頁
2026屆遼寧省遼源市金鼎高級中學數(shù)學高二上期末監(jiān)測模擬試題含解析_第2頁
2026屆遼寧省遼源市金鼎高級中學數(shù)學高二上期末監(jiān)測模擬試題含解析_第3頁
2026屆遼寧省遼源市金鼎高級中學數(shù)學高二上期末監(jiān)測模擬試題含解析_第4頁
2026屆遼寧省遼源市金鼎高級中學數(shù)學高二上期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆遼寧省遼源市金鼎高級中學數(shù)學高二上期末監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某市2016年至2020年新能源汽車年銷量y(單位:百臺)與年份代號x的數(shù)據(jù)如下表:年份20162017201820192020年份代號x01234年銷量y1015m3035若根據(jù)表中的數(shù)據(jù)用最小二乘法求得y關于x的回歸直線方程為,則表中m的值為()A.22 B.20C.30 D.32.52.已知圓的方程為,則圓心的坐標為()A. B.C. D.3.如圖,,是平面上兩點,且,圖中的一系列圓是圓心分別為,的兩組同心圓,每組同心圓的半徑分別是1,2,3,…,A,B,C,D,E是圖中兩組同心圓的部分公共點.若點A在以,為焦點的橢圓M上,則()A.點B和C都在橢圓M上 B.點C和D都在橢圓M上C.點D和E都在橢圓M上 D.點E和B都在橢圓M上4.已知,,若不等式恒成立,則正數(shù)的最小值是()A.2 B.4C.6 D.85.阿基米德(公元前287年~公元前212年)不僅是著名物理學家,也是著名的數(shù)學家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的對稱軸為坐標軸,焦點在軸上,且橢圓的離心率為,面積為,則橢圓的標準方程為()A B.C. D.6.已知命題,,若是一個充分不必要條件,則的取值范圍是()A. B.C. D.7.已知直線與直線,若,則()A.6 B.C.2 D.8.與空間向量共線的一個向量的坐標是()A. B.C. D.9.拋物線的焦點為,準線為,焦點在準線上的射影為點,過任作一條直線交拋物線于兩點,則為()A.銳角 B.直角C.鈍角 D.銳角或直角10.在棱長為2的正方體中,為線段的中點,則點到直線的距離為()A. B.C. D.11.已知函數(shù),則()A.0 B.1C.2 D.12.如圖所示,已知三棱錐,點,分別為,的中點,且,,,用,,表示,則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某工廠的某種型號的機器的使用年限和所支出的維修費用(萬元)有下表的統(tǒng)計資料:23456223.85.56.57.0根據(jù)上表可得回歸直線方程,則=_____.14.設為第二象限角,若,則__________15.若,滿足約束條件,則的最小值為__________16.某校共有學生480人;現(xiàn)采用分層抽樣的方法從中抽取80人進行體能測試;若這80人中有30人是男生,則該校女生共有___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,拋物線:,點,過點的直線l與拋物線交于A,B兩點:當l與拋物線的對稱軸垂直時,(1)求拋物線的標準方程;(2)若點A在第一象限,記的面積為,的面積為,求的最小值18.(12分)已知(1)求的最小正周期及單調遞增區(qū)間;(2)已知鈍角內角A,B,C的對邊長分別a,b,c,若,,.求a的值19.(12分)已知圓,直線(1)求證:對,直線l與圓C總有兩個不同交點;(2)當時,求直線l被圓C截得的弦長20.(12分)已知拋物線C:上一點與焦點F的距離為(1)求和p的值;(2)直線l:與C相交于A,B兩點,求直線AM,BM的斜率之積21.(12分)經(jīng)觀測,某種昆蟲的產(chǎn)卵數(shù)y與溫度x有關,現(xiàn)將收集到的溫度和產(chǎn)卵數(shù)的10組觀測數(shù)據(jù)作了初步處理,得到如下圖的散點圖及一些統(tǒng)計量表.275731.121.71502368.3630表中,(1)根據(jù)散點圖判斷,與哪一個適宜作為y與x之間的回歸方程模型?(給出判斷即可,不必說明理由)(2)根據(jù)(1)的判斷結果及表中數(shù)據(jù).試求y關于x回歸方程.附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,.22.(10分)已知冪函數(shù)在上單調遞減,函數(shù)的定義域為集合A(1)求m的值;(2)當時,的值域為集合B,若是成立的充分不必要條件,求實數(shù)的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求出樣本中心的橫坐標,代入回歸直線方程,求出樣本中心的縱坐標,然后求解即可【詳解】因為,代入回歸直線方程為,所以,,于是得,解得故選:B2、A【解析】將圓的方程配成標準方程,可求得圓心坐標.【詳解】圓的標準方程為,圓心的坐標為.故選:A.3、C【解析】根據(jù)橢圓的定義判斷即可求解.【詳解】因為,所以橢圓M中,因為,,,,所以D,E在橢圓M上.故選:C4、B【解析】由基本不等式求出的最小值,只需最小值大于等于18,得到關于的不等式,求解,即可得出結論.【詳解】,因為不等式恒成立,所以,即,解得,所以.故選:B.【點睛】本題考查基本不等式的應用,考查一元二次不等式的解法,屬于基礎題.5、C【解析】由題意,設出橢圓的標準方程為,然后根據(jù)橢圓的離心率以及橢圓面積列出關于的方程組,求解方程組即可得答案【詳解】由題意,設橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.6、A【解析】先化簡命題p,q,再根據(jù)是的一個充分不必要條件,由q求解.【詳解】因為命題,或,又是的一個充分不必要條件,所以,解得,所以的取值范圍是,故選:A7、A【解析】根據(jù)兩直線垂直的充要條件得到方程,解得即可;【詳解】解:因為直線與直線,且,所以,解得;故選:A8、C【解析】根據(jù)空間向量共線的坐標表示即可得出結果.【詳解】.故選:C.9、D【解析】設出直線方程,聯(lián)立拋物線方程,利用韋達定理,求得,根據(jù)其結果即可判斷和選擇.【詳解】為說明問題,不妨設拋物線方程,則,直線斜率顯然不為零,故可設直線方程為,聯(lián)立,可得,設坐標為,則,故,當時,,;當時,,;故為銳角或直角.故選:D.10、D【解析】根據(jù)正方體的性質,在直角△中應用等面積法求到直線的距離.【詳解】由正方體的性質:面,又面,故,直角△中,若到上的高為,∴,而,,,∴.故選:D.11、C【解析】對函數(shù)f(x)求導即可求得結果.【詳解】函數(shù),則,,故選C【點睛】本題考查正弦函數(shù)的導數(shù)的應用,屬于簡單題.12、A【解析】連接,先根據(jù)已知條件表示出,再根據(jù)求得結果.【詳解】連接,如下圖所示:因為為的中點,所以,又因為為的中點,所以,所以,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、08##【解析】根據(jù)表格中的數(shù)據(jù)求出,將點代入回歸直線求出即可.【詳解】由表格可得,,由于回歸直線過點,故,解得,故答案為:0.08.14、【解析】先求出,再利用二倍角公式求的值.【詳解】因為為第二象限角,若,所以.所以.故答案為【點睛】本題主要考查同角三角函數(shù)的平方關系,考查二倍角的正弦公式,意在考查學生對這些知識的理解掌握水平,屬于基礎題.15、【解析】作出線性約束條件的可行域,再利用截距的幾何意義求最小值;【詳解】約束條件的可行域,如圖所示:目標函數(shù)在點取得最小值,即.故答案為:16、人##300【解析】根據(jù)人數(shù)占比直接計算即可.【詳解】該校女生共有人.故答案為:人.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).(2)8.【解析】(1)將點代入拋物線方程可解得基本量.(2)設直線AB為,代入聯(lián)立得關于的一元二次方程,運用韋達定理,得到關于的函數(shù)關系,再求函數(shù)最值.【小問1詳解】當l與拋物線的對稱軸垂直時,,,則代入拋物線方程得,所以拋物線方程是【小問2詳解】設點,,直線AB方程為,聯(lián)立拋物線整理得:,,∴,,有,由A在第一象限,則,即,∴,可得,又O到AB的距離,∴,而,∴,,當,,單調遞減;,,單調遞增;∴的最小值為,此時,.18、(1),;(2)2.【解析】(1)利用三角恒等變換公式化簡函數(shù),再利用三角函數(shù)性質計算作答.(2)由(1)的結論及已知求出角C,再利用余弦定理計算判斷作答.【小問1詳解】依題意,,則的最小正周期,由,解得,則在上單調遞增,所以的最小正周期為,遞增區(qū)間為.【小問2詳解】由(1)知,,即,在中,,,則,即,,于是得,解得,在中,由余弦定理得:,即,解得或,當時,,為直角三角形,與是鈍角三角形矛盾,當時,,,此時,是鈍角三角形,則,所以a的值是2.19、(1)證明見解析;(2).【解析】(1)由直線過定點,只需判斷定點在圓內部,即可證結論.(2)由點線距離公式求弦心距,再利用半徑、弦心距、弦長的幾何關系求弦長即可.【小問1詳解】直線恒過定點,又,所以點在圓的內部,所以直線與圓總有兩個不同的交點,得證.【小問2詳解】由題設,,又的圓心為,半徑為,所以到直線的距離,所以所求弦長為20、(1)(2)【解析】(1)結合拋物線的定義以及點坐標求得以及.(2)求得的坐標,由此求得直線AM,BM的斜率之積.【小問1詳解】依題意拋物線C:上一點與焦點F的距離為,根據(jù)拋物線的定義可知,將點坐標代入拋物線方程得.【小問2詳解】由(1)得拋物線方程為,,不妨設A在B下方,所以.21、(1)(2)【解析】(1)根據(jù)散點圖看出樣本點分布在一條指數(shù)函數(shù)的周圍,即可判斷;(2)令,利用最小二乘法即可求出y關于x的線性回歸方程.【小問1詳解】根據(jù)散點圖判斷,看

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論