浙江省麗水、湖州、衢州市2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
浙江省麗水、湖州、衢州市2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
浙江省麗水、湖州、衢州市2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
浙江省麗水、湖州、衢州市2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
浙江省麗水、湖州、衢州市2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

浙江省麗水、湖州、衢州市2026屆高二數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知、、、是直線,、是平面,、、是點(、不重合),下列敘述錯誤的是()A.若,,,,則B.若,,,則C.若,,則D.若,,則2.已知兩條直線:,:,且,則的值為()A.-2 B.1C.-2或1 D.2或-13.已知向量是兩兩垂直的單位向量,且,則()A.5 B.1C.-1 D.74.設(shè)命題甲:,命題乙:直線與直線平行,則()A.甲是乙的充分不必要條件 B.甲是乙的必要不充分條件C.甲是乙的充要條件 D.甲是乙的既不充分也不必要條件5.已知,是球的球面上兩點,,為該球面上的動點,若三棱錐體積的最大值為36,則球的表面積為()A. B.C. D.6.橢圓的離心率為()A. B.C. D.7.已知點P是圓上一點,則點P到直線的距離的最大值為()A.2 B.C. D.8.以軸為對稱軸,頂點為坐標(biāo)原點,焦點到準(zhǔn)線的距離為4的拋物線方程是()A. B.C.或 D.或9.等差數(shù)列x,,,…的第四項為()A.5 B.6C.7 D.810.棱長為1的正四面體的表面積是()A. B.C. D.11.《周髀算經(jīng)》中有這樣一個問題:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣,自冬至日起,其日影長依次成等差數(shù)列,立春當(dāng)日日影長為9.5尺,立夏當(dāng)日日影長為2.5尺,則冬至當(dāng)日日影長為()A.12.5尺 B.13尺C.13.5尺 D.14尺12.下列曲線中,與雙曲線有相同漸近線是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù)對應(yīng)的點在復(fù)平面第一象限內(nèi),甲、乙、丙三人對復(fù)數(shù)的陳述如下為虛數(shù)單位:甲:;乙:;丙:,在甲、乙、丙三人陳述中,有且只有兩個人的陳述正確,則復(fù)數(shù)______14.已知曲線的焦距是10,曲線上的點到一個焦點的距離是2,則點到另一個焦點的距離為__________.15.設(shè)實數(shù)、滿足約束條件,則的最小值為___________.16.如圖所示,二面角為,是棱上的兩點,分別在半平面內(nèi),且,,,,,則的長______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)等差數(shù)列的各項均為整數(shù),且滿足對任意正整數(shù),總存在正整數(shù),使得,則稱這樣的數(shù)列具有性質(zhì)(1)若數(shù)列的通項公式為,數(shù)列是否具有性質(zhì)?并說明理由;(2)若,求出具有性質(zhì)的數(shù)列公差的所有可能值;(3)對于給定的,具有性質(zhì)的數(shù)列是有限個,還是可以無窮多個?(直接寫出結(jié)論)18.(12分)已知橢圓的離心率為,長軸長為,F(xiàn)為橢圓的右焦點(1)求橢圓C的方程;(2)經(jīng)過點的直線與橢圓C交于兩點,,且以為直徑的圓經(jīng)過原點,求直線的斜率;(3)點是以長軸為直徑的圓上一點,圓在點處的切線交直線于點,求證:過點且垂直于的直線過定點19.(12分)已知直線l過點,與兩坐標(biāo)軸的正半軸分別交于A,B兩點,O為坐標(biāo)原點(1)若的面積為,求直線l的方程;(2)求的面積的最小值20.(12分)雙曲線(,)的離心率,且過點.(1)求a,b的值;(2)求與雙曲線C有相同漸近線,且過點的雙曲線的標(biāo)準(zhǔn)方程.21.(12分)已知命題:,在下面①②中任選一個作為:,使為真命題,求出實數(shù)a的取值范圍.①關(guān)于x的方程有兩個不等正根;②.(若選①、選②都給出解答,只按第一個解答計分.)22.(10分)已知在平面直角坐標(biāo)系中,圓A:的圓心為A,過點B(,0)任作直線l交圓A于點C、D,過點B作與AD平行的直線交AC于點E.(1)求動點E的軌跡方程;(2)設(shè)動點E的軌跡與y軸正半軸交于點P,過點P且斜率為k1,k2的兩直線交動點E的軌跡于M、N兩點(異于點P),若,證明:直線MN過定點.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由公理2可判斷A選項;由公理3可判斷B選項;利用平行線的傳遞性可判斷C選項;直接判斷線線位置關(guān)系,可判斷D選項.【詳解】對于A選項,由公理2可知,若,,,,則,A對;對于B選項,由公理3可知,若,,,則,B對;對于C選項,由空間中平行線的傳遞性可知,若,,則,C對;對于D選項,若,,則與平行、相交或異面,D錯.故選:D.2、B【解析】兩直線平行,傾斜角相等,斜率均不存在或斜率存在且相等,據(jù)此即可求解.【詳解】:,:斜率不可能同時不存在,∴和斜率相等,則或,∵m=-2時,和重合,故m=1.另解:,故m=1.故選:B.3、B【解析】根據(jù)單位向量的定義和向量的乘法運算計算即可.【詳解】因為向量是兩兩垂直的單位向量,且所以.故選:B4、A【解析】根據(jù)充分條件和必要條件的定義,結(jié)合兩直線平行的性質(zhì)進(jìn)行求解即可.【詳解】當(dāng)時,直線的方程為,直線方程為,此時,直線與直線平行,即甲乙;直線和直線平行,則,解得或,即乙甲;則甲是乙的充分不必要條件.故選:.5、C【解析】當(dāng)平面時,三棱錐體積最大,根據(jù)棱長與球半徑關(guān)系即可求出球半徑,從而求出表面積.【詳解】當(dāng)平面時,三棱錐體積最大.又,則三棱錐體積,解得;故表面積.故選:C.【點睛】關(guān)鍵點點睛:本題考查三棱錐與球的組合體的綜合問題,本題的關(guān)鍵是判斷當(dāng)平面時,三棱錐體積最大.6、A【解析】由橢圓標(biāo)準(zhǔn)方程求得,再計算出后可得離心率【詳解】在橢圓中,,,,因此,該橢圓的離心率為.故選:A.【點睛】本題考查求橢圓的離心率,根據(jù)橢圓標(biāo)準(zhǔn)方程求出即可7、C【解析】求出圓心到直線的距離,由這個距離加上半徑即得【詳解】由圓,可得圓心坐標(biāo),半徑,則圓心C到直線的距離為,所以點P到直線l的距離的最大值為.故選:C8、C【解析】根據(jù)拋物線的概念以及幾何性質(zhì)即可求拋物線的標(biāo)準(zhǔn)方程.【詳解】依題意設(shè)拋物線方程為因為焦點到準(zhǔn)線的距離為4,所以,所以,所以拋物線方程或故選:C9、A【解析】根據(jù)等差數(shù)列的定義求出x,求出公差,即可求出第四項.【詳解】由題可知,等差數(shù)列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四項為-1+(4-1)×2=5.故選:A.10、D【解析】采用數(shù)形結(jié)合,根據(jù)邊長,結(jié)合正四面體的概念,計算出正三角形的面積,可得結(jié)果【詳解】如圖由正四面體的概念可知,其四個面均是全等的等邊三角形,由其棱長為1,所以,所以可知:正四面體的表面積為,故選:D11、B【解析】設(shè)十二節(jié)氣自冬至日起的日影長構(gòu)成的等差數(shù)列為,利用等差數(shù)列的性質(zhì)即可求解.【詳解】設(shè)十二節(jié)氣自冬至日起的日影長構(gòu)成的等差數(shù)列為,則立春當(dāng)日日影長為,立夏當(dāng)日日影長為,故所以冬至當(dāng)日日影長為.故選:B12、B【解析】求出已知雙曲線的漸近線方程,逐一驗證即可.【詳解】雙曲線的漸近線方程為,而雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】設(shè),則,然后分別求出甲,乙,丙對應(yīng)的結(jié)論,先假設(shè)甲正確,則得出乙錯誤,丙正確,由此即可求解【詳解】解:設(shè),則,甲:由可得,則,乙:由可得:,丙:由可得,即,所以,若,則,則不成立,,則,解得或,所以甲,丙正確,乙錯誤,此時或,又復(fù)數(shù)對應(yīng)的點在復(fù)平面第一象限內(nèi),所以,故答案為:14、或10.【解析】對參數(shù)a進(jìn)行討論,考慮曲線是橢圓和雙曲線的情況,進(jìn)而結(jié)合橢圓與雙曲線的定義和性質(zhì)求得答案.【詳解】由題意,曲線的半焦距為5,若曲線是焦點在x軸上的橢圓,則a>16,所以,而橢圓上的點到一個焦點距離是2,則點到另一個焦點的距離為;若曲線是焦點在y軸上的橢圓,則0<a<16,所以,舍去;若曲線是雙曲線,則a<0,容易判斷雙曲線的焦點在y軸,所以,不妨設(shè)點P在雙曲線的上半支,上下焦點分別為,因為實半軸長為4,容易判斷點P到下焦點的距離的最小值為4+5=9>2,不合題意,所以點P到上焦點的距離為2,則它到下焦點的距離.故答案為:或10.15、2【解析】畫出不等式組對應(yīng)的可行域,平移動直線后可得目標(biāo)函數(shù)的最小值.【詳解】不等式組對應(yīng)的可行域如圖所示:將初始直線平移至點時,可取最小值,由可得,故,故答案為:2.16、【解析】推導(dǎo)出,從而,結(jié)合,,,能求出的長【詳解】二面角為,是棱上的兩點,分別在半平面、內(nèi),且所以,所以,,,的長故答案為【點睛】本題主要考查空間向量的運算法則以及數(shù)量積的運算法則,意在考查靈活應(yīng)用所學(xué)知識解答問題的能力,是中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)數(shù)列具有性質(zhì),理由見解析;(2),;(3)有限個.【解析】(1)由題意,由性質(zhì)定義,即可知是否具有性質(zhì).(2)由題設(shè),存在,結(jié)合已知得且,則,由性質(zhì)的定義只需保證為整數(shù)即可確定公差的所有可能值;(3)根據(jù)(2)的思路,可得且,由為整數(shù),在為定值只需為整數(shù),即可判斷數(shù)列的個數(shù)是否有限.【小問1詳解】由,對任意正整數(shù),,說明仍為數(shù)列中的項,∴數(shù)列具有性質(zhì).【小問2詳解】設(shè)的公差為.由條件知:,則,即,∴必有且,則,而此時對任意正整數(shù),,又必一奇一偶,即為非負(fù)整數(shù)因此,只要為整數(shù)且,那么為中的一項.易知:可取,對應(yīng)得到個滿足條件的等差數(shù)列.【小問3詳解】同(2)知:,則,∴必有且,則,故任意給定,公差均為有限個,∴具有性質(zhì)的數(shù)列是有限個.【點睛】關(guān)鍵點點睛:根據(jù)性質(zhì)的定義,在第2、3問中判斷滿足等差數(shù)列通項公式,結(jié)合各項均為整數(shù),判斷公差的個數(shù)是否有限即可.18、(1);(2);(3).【解析】(1)由題意中離心率和長軸長可求出,即可求出橢圓方程.(2)設(shè)出與的坐標(biāo)即直線的方程,把直線與橢圓方程進(jìn)行聯(lián)立寫出韋達(dá)定理,由題意以為直徑圓經(jīng)過原點可得,化簡即可求出直線的斜率.(3)由題意可得圓的方程,設(shè),由和直線的方程化簡,即可得到答案.【小問1詳解】,,橢圓C的方程為.【小問2詳解】由題意知直線的斜率存在且不為0,設(shè)直線的方程為.設(shè).把直線的方程與橢圓的方程進(jìn)行聯(lián)立得:..由以為直徑圓經(jīng)過原點知,..經(jīng)檢驗,滿足,所以.【小問3詳解】由題意可得圓的方程為,設(shè),由得.①.當(dāng)時,,直線的方程為.直線過橢圓的右焦點.當(dāng)時,直線的斜率為且過,②把①代入②中得.故直線過橢圓的右焦點.綜上所述,直線過橢圓的右焦點.19、(1)或(2)4【解析】(1)設(shè)直線方程為,根據(jù)所過的點及面積可得關(guān)于的方程組,求出解后可得直線方程,我們也可以設(shè)直線,利用面積求出后可得直線方程.(2)結(jié)合(1)中直線方程的形式利用基本不等式可求面積的最小值.【小問1詳解】法一:(1)設(shè)直線,則解得或,所以直線或法二:設(shè)直線,,則,則,∴或﹣8所以直線或【小問2詳解】法一:∵,∴,∴,此時,∴面積的最小值為4,此時直線法二:∵,∴,此時,∴面積的最小值為4,此時直線20、(1),(2)【解析】(1)根據(jù)已知條件建立關(guān)于a、b、c的方程組可解;(2)巧設(shè)與已知雙曲線同漸近線的雙曲線方程為可得.【小問1詳解】因為離心率,所以.又因為點在雙曲線C上,所以.聯(lián)立上述方程,解得,,即,.【小問2詳解】設(shè)所求雙曲線的方程為,由雙曲線經(jīng)過點,得,即.所以雙曲線的方程為,其標(biāo)準(zhǔn)方程為.21、答案見解析【解析】根據(jù)題意,分析、為真時的取值范圍,又由復(fù)合命題真假的判斷方法可得、都是真命題,據(jù)此分析可得答案.【詳解】解:選①時由知在上恒成立,∴,即又由q:關(guān)于x的方程有兩個不等正根,知解得,由為真命題知,解得.實數(shù)a的取值范圍.選②時由知在上恒成立,∴,即又由,知在上恒成立,∴,又,當(dāng)且僅當(dāng)時取“=”號,∴,由為真命題知,解得.實數(shù)a的取值范圍.22、(1)(2)證明見解析【解析】(1)作出圖象,易知|EB|+|EA|為定值,根據(jù)橢圓定義即可判斷點E的軌跡,從而寫出其軌跡方程;(2)設(shè),當(dāng)直線MN斜率存在時,設(shè)直線MN的方程為:,聯(lián)立MN方程和E的軌跡方程得根與系數(shù)的關(guān)系,根據(jù)解出k與m的關(guān)系即可以判斷MN過定點;最后再考慮MN斜率不存在時是否也過該定點即可.【小問1詳解】由圓A:可得(,∴圓心A(-,0),圓的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論