版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆內(nèi)蒙古自治區(qū)高二數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)點關(guān)于坐標原點的對稱點是B,則等于()A.4 B.C. D.22.已知為坐標原點,點的坐標為,點的坐標滿足,則的最小值為()A B.C. D.43.已知雙曲線C的離心率為,,是C的兩個焦點,P為C上一點,,若△的面積為,則雙曲線C的實軸長為()A.1 B.2C.4 D.64.一個盒子里有3個分別標有號碼為1,2,3小球,每次取出一個,記下它的標號后再放回盒子中,共取2次,則在兩次取得小球中,標號最大值是3的概率為()A. B.C. D.5.直線的傾斜角為()A.150° B.120°C.60° D.30°6.已知函數(shù),則函數(shù)在點處的切線方程為()A. B.C. D.7.已知橢圓的短軸長和焦距相等,則a的值為()A.1 B.C. D.8.如圖,在平行六面體(底面為平行四邊形的四棱柱)中,E為延長線上一點,,則=()A. B.C. D.9.已知點是橢圓上一點,點,則的最小值為A. B.C. D.10.是橢圓的焦點,點在橢圓上,點到的距離為1,則到的距離為()A.3 B.4C.5 D.611.若直線經(jīng)過,,兩點,則直線的傾斜角的取值范圍是()A. B.C. D.12.設(shè)a,b,c分別是內(nèi)角A,B,C的對邊,若,,依次成公差不為0的等差數(shù)列,則()A.a,b,c依次成等差數(shù)列 B.,,依次成等差數(shù)列C.,,依次成等比數(shù)列 D.,,依次成等比數(shù)列二、填空題:本題共4小題,每小題5分,共20分。13.從1,2,3,4,5中任取兩個不同的數(shù),其中一個作為對數(shù)的底數(shù)a,另一個作為對數(shù)的真數(shù)b.則的概率為______.14.曲線在點處的切線方程是______.15.已知原命題為“若,則”,則它的逆否命題是__________(填寫”真命題”或”假命題”)16.如圖,把橢圓的長軸八等分,過每個分點作軸的垂線交橢圓的上半部分于,,,七個點,是橢圓的一個焦點,則的值為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在①,;②,,③,這三個條件中任選一個,補充在下面問題中并解決問題問題:設(shè)等差數(shù)列的前項和為,________________,若,判斷是否存在最大值,若存在,求出取最大值時的值;若不存在,說明理由注:如果選擇多個條件分別解答.按第一個解答記分18.(12分)在平面直角坐標系xOy中,已知拋物線()的焦點F到雙曲線的漸近線的距離為1.(1)求拋物線C的方程;(2)若不經(jīng)過原點O的直線l與拋物線C交于A、B兩點,且,求證:直線l過定點.19.(12分)在下面兩個條件中任選一個條件,補充在后面問題中的橫線上,并完成解答.條件①:展開式前三項的二項式系數(shù)的和等于37;條件②:第3項與第7項的二項式系數(shù)相等;問題:在二項式的展開式中,已知__________.(1)求展開式中二項式系數(shù)最大的項;(2)設(shè),求的值;(3)求的展開式中的系數(shù).20.(12分)如圖,四棱錐中,底面為正方形,底面,,點,,分別為,,的中點,平面棱(1)試確定的值,并證明你的結(jié)論;(2)求平面與平面夾角的余弦值21.(12分)已知等比數(shù)列的公比,且,的等差中項為,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.22.(10分)已知等差數(shù)列的前項和為,且,(1)求數(shù)列的通項公式;(2)若數(shù)列滿足,求數(shù)列的前項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】求出點關(guān)于坐標原點的對稱點是B,再利用兩點之間的距離即可求得結(jié)果.【詳解】點關(guān)于坐標原點的對稱點是故選:A2、B【解析】由數(shù)量積的坐標運算求得,令,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案【詳解】解:根據(jù)題意可得,、,所以,令,由約束條件作出可行域如下圖所示,由得,即,由,得,由圖可知,當直線過時,直線在軸上的截距最小,有最小值為,即,所以故選:B3、C【解析】由已知條件可得,,,再由余弦定理得,進而求其正弦值,最后利用三角形面積公式列方程求參數(shù)a,即可知雙曲線C的實軸長.【詳解】由題意知,點P在右支上,則,又,∴,,又,∴,則在△中,,∴,故,解得,∴實軸長為,故選:C.4、C【解析】求出兩次取球都沒有取到3的概率,再利用對立事件的概率公式計算作答.【詳解】依題意,每次取到標號為3的球的事件為A,則,且每次取球是相互獨立的,在兩次取得小球中,標號最大值是3的事件M,其對立事件是兩次都沒有取到標號為3的球的事件,,則有,所以在兩次取得小球中,標號最大值是3的概率為.故選:C5、D【解析】由斜率得傾斜角【詳解】直線的斜率為,所以傾斜角為30°.故選:D6、C【解析】依據(jù)導(dǎo)數(shù)幾何意義去求函數(shù)在點處的切線方程即可解決.【詳解】則,又則函數(shù)在點處的切線方程為,即故選:C7、A【解析】由題設(shè)及橢圓方程可得,即可求參數(shù)a的值.【詳解】由題設(shè)易知:橢圓參數(shù),即有,可得故選:A8、A【解析】根據(jù)空間向量的加減法運算法則,直接寫出向量的表達式,即可得答案.【詳解】=,故選:A.9、D【解析】設(shè),則,.所以當時,的最小值為.故選D.10、C【解析】利用橢圓的定義直接求解【詳解】由題意得,得,因為,,所以,故選:C11、D【解析】應(yīng)用兩點式求直線斜率得,結(jié)合及,即可求的范圍.【詳解】根據(jù)題意,直線經(jīng)過,,,∴直線的斜率,又,∴,即,又,∴;故選:D12、B【解析】由等差數(shù)列的性質(zhì)得,利用正弦定理、余弦定理推導(dǎo)出,從而,,依次成等差數(shù)列.【詳解】解:∵a,b,c分別是內(nèi)角A,B,C的對邊,,,依次成公差不為0的等差數(shù)列,∴,根據(jù)正弦定理可得,∴,∴,∴,∴,,依次成等差數(shù)列.故選:B.【點睛】本題考查三個數(shù)成等差數(shù)列或等比數(shù)列的判斷,考查等差數(shù)列、等比數(shù)列的性質(zhì)、正弦定理、余弦定理等基礎(chǔ)知識,考查運算求解能力,考查函數(shù)與方程思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】利用列舉法,結(jié)合古典概型概率計算公式以及對數(shù)的知識求得正確答案.【詳解】的所有可能取值為,,共種,滿足的為,,共種,所以的概率為.故答案為:14、x-y-2=0【解析】解:因為曲線在點(1,-1)處的切線方程是由點斜式可知為x-y-2=015、真命題【解析】先判斷原命題的真假,再由逆否命題與原命題是等價命題判斷.【詳解】因為命題“若,則”是真命題,且逆否命題與原命題是等價命題,所以它的逆否命題是真命題,故答案為:真命題16、28【解析】設(shè)橢圓的另一個焦點為由橢圓的幾何性質(zhì)可知:,同理可得,且,故,故答案為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、答案不唯一,具體見解析【解析】選①:易得,法一:令求n,即可為何值時取最大值;法二:寫出,利用等差數(shù)列前n項和的函數(shù)性質(zhì)判斷為何值時有最大值;選②:由數(shù)列前n項和及等差數(shù)列下標和的性質(zhì)易得、即可確定有最大值時值;選③:由等差數(shù)列前n項和公式易得、即可確定有最大值時值;【詳解】選①:設(shè)數(shù)列的公差為,,,解得,即,法一:當時,有,得,∴當時,;,;時,,∴或時,取最大值法二:,對稱軸,∴或時,取最大值選②:由,得,由等差中項的性質(zhì)有,即,由,得,∴,故,∴當時,,時,,故時,取最大值選③:由,得,可得,由,得,可得,∴,故,∴當時,,時,,故時,取最大值【點睛】關(guān)鍵點點睛:根據(jù)所選的條件,結(jié)合等差數(shù)列前n項和公式的性質(zhì)、下標和相等的性質(zhì)等確定數(shù)列中項的正負性,找到界點n值即可.18、(1)(2)證明見解析【解析】(1)求出雙曲線的漸近線方程,由點到直線距離公式可得參數(shù)值得拋物線方程;(2)設(shè)直線方程為,,直線方程代入拋物線方程后應(yīng)用韋達定理得,代入可得值,得定點坐標【小問1詳解】已知雙曲線的一條漸近線方程為,即,拋物線的焦點為,所以,解得(因為),所以拋物線方程為;【小問2詳解】由題意設(shè)直線方程為,設(shè)由得,,,又,所以,所以,直線不過原點,,所以所以直線過定點19、(1)答案見解析(2)0(3)560【解析】(1)選擇①,由,得,選擇②,由,得;(2)利用賦值法可求解;(3)分兩個部分求解后再求和即可.【小問1詳解】選擇①,因為,解得,所以展開式中二項式系數(shù)最大的項為選擇②,因為,解得,所以展開式中二項式系數(shù)最大的項為【小問2詳解】令,則,令,則,所以,【小問3詳解】因為所以的展開式中含的項為:所以展開式中的系數(shù)為560.20、(1),證明見解析(2)【解析】(1),利用線面平行的判定和性質(zhì)可得答案;(2)以為原點,所在直線分別為的正方向建立空間直角坐標系,求出平面的法向量和平面的法向量由向量夾角公式可得答案.【小問1詳解】.證明如下:在△中,因為點分別為的中點,所以//.又平面,平面,所以//平面.因為平面,平面平面,所以//所以//.在△中,因為點為的中點,所以點為的中點,即.【小問2詳解】因為底面為正方形,所以.因為底面,所以,.如圖,建立空間直角坐標系,則,,,因為分別為的中點,所以.所以,.設(shè)平面的法向量,則即令,于.又因為平面的法向量為,所以所以平面與平面夾角的余弦值為.21、(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 規(guī)范化經(jīng)營單位管理制度
- 規(guī)范診療培訓(xùn)及考核制度
- 交通內(nèi)務(wù)管理制度規(guī)范
- 紫外線操作制度規(guī)范標準
- 家政公司業(yè)務(wù)制度規(guī)范
- 藝術(shù)生行為規(guī)范管理制度
- 裝卸油安全制度規(guī)范要求
- 雷達操作員值班制度規(guī)范
- 硝酸生產(chǎn)工崗前安全規(guī)程考核試卷含答案
- 醫(yī)療器械經(jīng)營企業(yè)質(zhì)量管理制度自查報告
- 2025年國家開放大學(xué)《社會研究方法》期末考試復(fù)習(xí)試題及答案解析
- 2025金華市軌道交通控股集團運營有限公司應(yīng)屆生招聘170人考試筆試備考試題及答案解析
- 2025年鈹?shù)V行業(yè)分析報告及未來發(fā)展趨勢預(yù)測
- 2025年衛(wèi)健委編制考試題及答案
- 2025年福建省廈門中考模擬預(yù)測地理試題
- 涉爆粉塵專項知識培訓(xùn)課件
- 環(huán)保企業(yè)污水處理標準操作規(guī)程
- 高危孕婦五色管理課件
- 安全總監(jiān)先進個人材料范文
- 病案委員會課件
- GB/T 45816-2025道路車輛汽車空調(diào)系統(tǒng)用制冷劑系統(tǒng)安全要求
評論
0/150
提交評論