版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆山西省渾源縣第七中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線:的左、右焦點分別為,,過點且斜率為的直線與雙曲線在第二象限的交點為,若,則雙曲線的離心率是()A. B.C. D.2.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,而是逐項差數(shù)之差或者高次差相等.對這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有一個高階等差數(shù)列,其前7項分別為1,5,11,21,37,61,95,則該數(shù)列的第8項為()A.99 B.131C.139 D.1413.設(shè)正方體的棱長為,則點到平面的距離是()A. B.C. D.4.已知向量,則()A.5 B.6C.7 D.85.函數(shù)的圖像大致是()A. B.C. D.6.已知函數(shù),當(dāng)時,函數(shù)在,上均為增函數(shù),則的取值范圍是A. B.C. D.7.等差數(shù)列中,若,,則等于()A. B.C. D.8.已知圓M的圓心在直線上,且點,在M上,則M的方程為()A. B.C. D.9.將一顆骰子先后拋擲2次,觀察向上的點數(shù),則點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為()A. B.C. D.10.已知在四棱錐中,平面,底面是邊長為4的正方形,,E為棱的中點,則直線與平面所成角的正弦值為()A. B.C. D.11.已知橢圓的左、右焦點分別是,焦距,過點的直線與橢圓交于兩點,若,且,則橢圓C的方程為()A. B.C. D.12.已知正三棱柱中,,點為中點,則異面直線與所成角的余弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù),.若對任何,,恒成立,求的取值范圍______.14.已知雙曲線:,,是其左右焦點.圓:,點為雙曲線右支上的動點,點為圓上的動點,則的最小值是________.15.定義離心率是的橢圓為“黃金橢圓”.已知橢圓是“黃金橢圓”,則_________.若“黃金橢圓”兩個焦點分別為、,P為橢圓C上的異于頂點的任意一點,點M是的內(nèi)心,連接并延長交于點N,則________.16.已知數(shù)列{an}滿足an+2=an+1-an(n∈N*),且a1=2,a2=3,則a2022的值為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)證明:是無理數(shù).(我們知道任意一個有理數(shù)都可以寫成形如(m,n互質(zhì),)的形式)18.(12分)設(shè)圓的圓心為A,直線l過點且與x軸不重合,l交圓A于C,D兩點,過B作AC的平行線交AD于點E(1)判斷與題中圓A的半徑的大小關(guān)系,并寫出點E的軌跡方程;(2)過點作斜率為,的兩條直線,分別交點E的軌跡于M,N兩點,且,證明:直線MN必過定點19.(12分)已知數(shù)列的前n項和為,,且(1)求數(shù)列的通項公式;(2)令,記數(shù)列的前n項和為,求證:20.(12分)已知圓經(jīng)過,且圓心C在直線上(1)求圓的標(biāo)準(zhǔn)方程;(2)若直線:與圓存在公共點,求實數(shù)的取值范圍21.(12分)已知直線,圓.(1)證明:直線l與圓C相交;(2)設(shè)l與C的兩個交點分別為A、B,弦AB的中點為M,求點M的軌跡方程;(3)在(2)的條件下,設(shè)圓C在點A處的切線為,在點B處的切線為,與的交點為Q.試探究:當(dāng)m變化時,點Q是否恒在一條定直線上?若是,請求出這條直線的方程;若不是,說明理由.22.(10分)已知橢圓的一個頂點為,離心率為(1)求橢圓C的方程;(2)若直線l與橢圓C交于M、N兩點,直線BM與直線BN的斜率之積為,證明直線l過定點并求出該定點坐標(biāo)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)得到三角形為等腰三角形,然后結(jié)合雙曲線的定義得到,設(shè),進而作,得出,由此求出結(jié)果【詳解】因為,所以,即所以,由雙曲線的定義,知,設(shè),則,易得,如圖,作,為垂足,則,所以,即,即雙曲線的離心率為.故選:B2、D【解析】根據(jù)題中所給高階等差數(shù)列定義,找出其一般規(guī)律即可求解.【詳解】設(shè)該高階等差數(shù)列的第8項為,根據(jù)所給定義,用數(shù)列的后一項減去前一項得到一個數(shù)列,得到的數(shù)列也用后一項減去前一項得到一個數(shù)列,即得到了一個等差數(shù)列,如圖:由圖可得,則.故選:D3、D【解析】建立空間直角坐標(biāo)系,根據(jù)空間向量所學(xué)點到面的距離公式求解即可.【詳解】建立如下圖所示空間直角坐標(biāo)系,以為坐標(biāo)原點,所在直線為軸,所在直線為軸,所在直線為軸.因為正方體的邊長為4,所以,,,,,所以,,,設(shè)平面的法向量,所以,,即,設(shè),所以,,即,設(shè)點到平面的距離為,所以,故選:D.4、A【解析】利用空間向量的模公式求解.【詳解】因向量,所以,故選:A5、B【解析】由導(dǎo)數(shù)判斷函數(shù)的單調(diào)性及指數(shù)的增長趨勢即可判斷.【詳解】當(dāng)時,,∴在上單調(diào)遞增,當(dāng)時,,∴在上單調(diào)遞減,排除A、D;又由指數(shù)函數(shù)增長趨勢,排除C.故選:B6、A【解析】由,函數(shù)在上均為增函數(shù),恒成立,,設(shè),則,又設(shè),則滿足線性約束條件,畫出可行域如圖所示,由圖象可知在點取最大值為,在點取最小值.則的取值范圍是,故答案選A考點:利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),簡單的線性規(guī)劃7、C【解析】由等差數(shù)列下標(biāo)和性質(zhì)可得.【詳解】因為,,所以.故選:C8、C【解析】由題設(shè)寫出的中垂線,求其與的交點即得圓心坐標(biāo),再應(yīng)用兩點距離公式求半徑,即可得圓的方程.【詳解】因為點,在M上,所以圓心在的中垂線上由,解得,即圓心為,則半徑,所以M的方程為故選:C9、B【解析】基本事件總數(shù),再利用列舉法求出點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件的個數(shù),由此能求出點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率【詳解】解:將一顆骰子先后拋擲2次,觀察向上的點數(shù)之和,基本事件總數(shù),點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件有:,,,,,,,,共8個,則點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為故選:B10、B【解析】建立空間直角坐標(biāo)系,以向量法去求直線與平面所成角的正弦值即可.【詳解】平面,底面是邊長為4的正方形,則有,而,故平面,以A為原點,分別以AB、AD、AP所在直線為x軸、y軸、z軸建立空間直角坐標(biāo)系如圖:則,,,設(shè)直線與平面所成角為,又由題可知為平面的一個法向量,則故選:B11、A【解析】畫出圖形,利用已知條件,推出,延長交橢圓于點,得到直角和直角,設(shè),則,根據(jù)橢圓的定義轉(zhuǎn)化求解,即可求得橢圓的方程.【詳解】如圖所示,,則,延長交橢圓于點,可得直角和直角,設(shè),則,根據(jù)橢圓的定義,可得,在直角中,,解得,又在中,,代入可得,所以,所以橢圓的方程為.故選:A.12、A【解析】根據(jù)異面直線所成角的定義,取中點為,則為異面直線和所成角或其補角,再解三角形即可求出【詳解】如圖所示:設(shè)中點為,則在三角形中,為中點,為中位線,所以有,,所以為異面直線和所成角或其補角,在三角形中,,所以由余弦定理有,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先把原不等式轉(zhuǎn)化為恒成立,構(gòu)造函數(shù),利用恒成立,求出的取值范圍.【詳解】因為對任何,,所以對任何,,所以在上為減函數(shù).,,所以恒成立,即對恒成立,所以,所以.即的取值范圍是.故答案為:.【點睛】恒(能)成立問題求參數(shù)的取值范圍:①參變分離,轉(zhuǎn)化為不含參數(shù)的最值問題;②不能參變分離,直接對參數(shù)討論,研究的單調(diào)性及最值;③特別地,個別情況下恒成立,可轉(zhuǎn)換為(二者在同一處取得最值).14、##【解析】利用雙曲線定義,將的最小值問題轉(zhuǎn)化為的最小值問題,然后結(jié)合圖形可解.【詳解】由題設(shè)知,,,,圓的半徑由點為雙曲線右支上的動點知∴∴.故答案為:15、①.②.【解析】第一空,直接套入“黃金橢圓”新定義即可,第二空,從內(nèi)切圓入手,找到等量關(guān)系,進而得到,求解即可【詳解】由題,,所以如圖,連接,設(shè)內(nèi)切圓半徑為,則,即,∴,∴,∴∴,∴故答案為:;【點睛】本題從新定義出發(fā),第一空直接套用定義可得答案,第二空升華,需要在理解新定義的基礎(chǔ)上,借助內(nèi)切圓的相關(guān)公式求解,層層遞進,是一道好題.關(guān)鍵點在于找到“”這一關(guān)系16、【解析】根據(jù)遞推關(guān)系求出數(shù)列的前幾項,得周期性,然后可得結(jié)論【詳解】由題意,,,,,,所以數(shù)列是周期數(shù)列,周期為6,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、詳見解析【解析】利用反證法,即可推得矛盾.【詳解】假設(shè)有理數(shù),則,則,為整數(shù),的尾數(shù)只能是0,1,4,5,6,9,的尾數(shù)只能是0,1,4,5,6,9,則的尾數(shù)是0,2,8,由得,尾數(shù)為0,則的尾數(shù)是0,而的尾數(shù)為0或5,這與為最簡分數(shù),的最大公約數(shù)是1,相矛盾,所以假設(shè)不正確,是無理數(shù).18、(1)與半徑相等,(2)證明見解析【解析】(1)依據(jù)橢圓定義去求點E的軌跡方程事半功倍;(2)直線MN要分為斜率存在的和不存在的兩種情況進行討論,由設(shè)而不求法把條件轉(zhuǎn)化為直線MN過定點的條件即可解決.【小問1詳解】圓即為,可得圓心,半徑,由,可得,由,可得,即為,即有,則,所以其與半徑相等.因為,故E的軌跡為以A,B為焦點的橢圓(不包括左右頂點),且有,,即,,,則點E的軌跡方程為;【小問2詳解】當(dāng)直線MN斜率不存在時,設(shè)直線方程為,則,,,,則,∴,此時直線MN的方程為當(dāng)直線MN斜率存在時,設(shè)直線方程為:,與橢圓方程聯(lián)立:,得,設(shè),,有則將*式代入化簡可得:,即,∴,此時直線MN:,恒過定點又直線MN斜率不存在時,直線MN:也過,故直線MN過定點.【點睛】數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學(xué)問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡捷。19、(1)(2)證明見解析【解析】(1)依題意可得,即可得到是以為首項,為公比的等比數(shù)列,從而求出數(shù)列的通項公式;(2)由(1)可得,利用錯位相減法求和,即可證明;【小問1詳解】解:因為,,所以,所以是以為首項,為公比的等比數(shù)列,所以,所以;【小問2詳解】解:由(1)可知,所以①,所以②;①②得所以;20、(1)(2)【解析】(1)因為圓心在直線上,可設(shè)圓心坐標(biāo)為,利用圓心到圓上兩點的距離相等列出等式求解即可.(2)直線與圓存在公共點,即圓心到直線的距離小于等于半徑,列出不等關(guān)系求解即可.【小問1詳解】解:因為圓心在直線上,所以設(shè)圓心坐標(biāo)為,因為圓經(jīng)過,,所以,即:,解方程得,圓心坐標(biāo)為,半徑為,圓的標(biāo)準(zhǔn)方程為:【小問2詳解】圓心到直線的距離且直線與圓有公共點即21、(1)證明見解析;(2);(3)點Q恒在直線上,理由見解析.【解析】(1)求出直線過定點,得到在圓內(nèi)部,故證明直線l與圓C相交;(2)設(shè)出點,利用垂直得到等量關(guān)系,整理后即為軌跡方程;(3)利用Q、A、B、C四點共圓,得到此圓方程,聯(lián)立,求出相交弦的方程,即直線的方程,根據(jù)直線過的定點,得到,從而得到點Q恒在直線上.【小問1詳解】證明:直線過定點,代入得:,故在圓內(nèi),故直線l與圓C相交;【小問2詳解】圓的圓心為,設(shè)點,由垂徑定理得:,即,化簡得:,點M的軌跡方程為:【小問3詳解】設(shè)點,由題意得:Q、A、B、C四點共圓,且圓的方程為:,即,與圓C的方程聯(lián)立,消去二次項得:,即為直線的方程,因為直線過定點,所以,解得:,所以當(dāng)m變化時,點Q恒在直線上.【點睛】本題的第三問是稍有難度的,處理方法是根據(jù)四點共圓,直徑的端點坐標(biāo),求出此圓的方程,與曲線聯(lián)立后得到相交弦的方程,是處理此類問題的關(guān)鍵.22、(1);(2)答案見解析,直線過定點.【解析】(1)首先
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030洗衣機行業(yè)專利布局分析及技術(shù)創(chuàng)新方向預(yù)測報告
- 糧庫建設(shè)監(jiān)理實施方案及案例分析
- 三年級英語聽說教學(xué)設(shè)計方案
- 高職院校創(chuàng)業(yè)孵化基地運營方案
- 水產(chǎn)養(yǎng)殖技術(shù)員崗前培訓(xùn)評估試題
- 項目進度控制與管理方案
- 中小企業(yè)財務(wù)風(fēng)險管理及內(nèi)部控制方案
- 公司內(nèi)部培訓(xùn)計劃制定與執(zhí)行
- 企業(yè)數(shù)字化轉(zhuǎn)型培訓(xùn)心得體會
- 銀杏樹栽植施工詳細方案與技術(shù)
- 膽囊癌課件教學(xué)課件
- 廣西2025年高等職業(yè)教育考試全區(qū)模擬測試 能源動力與材料 大類試題及逐題答案解說
- 2026江蘇省公務(wù)員考試公安機關(guān)公務(wù)員(人民警察)歷年真題匯編附答案解析
- 孕婦貧血教學(xué)課件
- 超市冷庫應(yīng)急預(yù)案(3篇)
- 5年(2021-2025)山東高考生物真題分類匯編:專題17 基因工程(解析版)
- 2025年10月自考00610高級日語(二)試題及答案
- 新華資產(chǎn)招聘筆試題庫2025
- 2025年中國潛孔鉆機行業(yè)細分市場研究及重點企業(yè)深度調(diào)查分析報告
- 食品經(jīng)營場所及設(shè)施設(shè)備清洗消毒和維修保養(yǎng)制度
- 2026年遼寧軌道交通職業(yè)學(xué)院單招職業(yè)技能測試題庫必考題
評論
0/150
提交評論