2022-2023學(xué)年人教版九年級數(shù)學(xué)上冊第二十四章圓專題訓(xùn)練試卷(含答案詳解)_第1頁
2022-2023學(xué)年人教版九年級數(shù)學(xué)上冊第二十四章圓專題訓(xùn)練試卷(含答案詳解)_第2頁
2022-2023學(xué)年人教版九年級數(shù)學(xué)上冊第二十四章圓專題訓(xùn)練試卷(含答案詳解)_第3頁
2022-2023學(xué)年人教版九年級數(shù)學(xué)上冊第二十四章圓專題訓(xùn)練試卷(含答案詳解)_第4頁
2022-2023學(xué)年人教版九年級數(shù)學(xué)上冊第二十四章圓專題訓(xùn)練試卷(含答案詳解)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版九年級數(shù)學(xué)上冊第二十四章圓專題訓(xùn)練考試時間:90分鐘;命題人:數(shù)學(xué)教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、在平面直角坐標(biāo)系xOy中,已知點A(4,3),以原點O為圓心,5為半徑作⊙O,則()A.點A在⊙O上B.點A在⊙O內(nèi)C.點A在⊙O外D.點A與⊙O的位置關(guān)系無法確定2、已知扇形的圓心角為,半徑為,則弧長為(

)A. B. C. D.3、已知⊙O中最長的弦為8cm,則⊙O的半徑為()cm.A.2 B.4 C.8 D.164、如圖,AB為的直徑,C,D為上的兩點,若,則的度數(shù)為(

)A. B. C. D.5、如圖,破殘的輪子上,弓形的弦AB為4m,高CD為1m,則這個輪子的半徑長為()A.m B.m C.5m D.m6、一個商標(biāo)圖案如圖中陰影部分,在長方形中,,,以點為圓心,為半徑作圓與的延長線相交于點,則商標(biāo)圖案的面積是(

)A. B.C. D.7、如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.218、如圖,點A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(

)A.160o B.120o C.100o D.80o9、如圖,在△ABC中,AG平分∠CAB,使用尺規(guī)作射線CD,與AG交于點E,下列判斷正確的是(

A.AG平分CDB.C.點E是△ABC的內(nèi)心D.點E到點A,B,C的距離相等10、如圖,⊙O的半徑為5,AB為弦,點C為的中點,若∠ABC=30°,則弦AB的長為()A. B.5 C. D.5第Ⅱ卷(非選擇題70分)二、填空題(5小題,每小題4分,共計20分)1、如圖,四邊形ABCD為⊙O的內(nèi)接正四邊形,△AEF為⊙O的內(nèi)接正三角形,連接DF.若DF恰好是同圓的一個內(nèi)接正多邊形的一邊,則這個正多邊形的邊數(shù)為_____.2、如圖,在⊙O中,是⊙O的直徑,,點是點關(guān)于的對稱點,是上的一動點,下列結(jié)論:①;②;③;④的最小值是10.上述結(jié)論中正確的個數(shù)是_________.3、一個扇形的圓心角是120°.它的半徑是3cm.則扇形的弧長為__________cm.4、如圖,正方形ABCD的邊長為2a,E為BC邊的中點,的圓心分別在邊AB、CD上,這兩段圓弧在正方形內(nèi)交于點F,則E、F間的距離為.5、如圖,在正六邊形ABCDEF中,分別以C,F(xiàn)為圓心,以邊長為半徑作弧,圖中陰影部分的面積為24π,則正六邊形的邊長為_____.三、解答題(5小題,每小題10分,共計50分)1、已知四邊形內(nèi)接于⊙O,,垂足為E,,垂足為F,交于點G,連接.(1)求證:;(2)如圖1,若,,求⊙O的半徑;(3)如圖2,連接,交于點H,若,,試判斷是否為定值,若是,求出該定值;若不是,說明理由.2、已知:..求作:,使它經(jīng)過點和點,并且圓心在的平分線上,3、如圖,AB是⊙O的直徑,D,E為⊙O上位于AB異側(cè)的兩點,連接BD并延長至點C,使得CD=BD,連接AC交⊙O于點F,連接AE,DE,DF.(1)證明:∠E=∠C;(2)若∠E=55°,求∠BDF的度數(shù).4、如圖,內(nèi)接于,,,則的直徑等于多少?5、已知:如圖,圓O是△ABC的外接圓,AO平分∠BAC.(1)求證:△ABC是等腰三角形;(2)當(dāng)OA=4,AB=6,求邊BC的長.-參考答案-一、單選題1、A【解析】【分析】先求出點A到圓心O的距離,再根據(jù)點與圓的位置依據(jù)判斷可得.【詳解】解:∵點A(4,3)到圓心O的距離,∴OA=r=5,∴點A在⊙O上,故選:A.【考點】本題考查了對點與圓的位置關(guān)系的判斷.關(guān)鍵要記住若半徑為,點到圓心的距離為,則有:當(dāng)時,點在圓外;當(dāng)時,點在圓上,當(dāng)時,點在圓內(nèi),也考查了勾股定理的應(yīng)用.2、D【解析】【分析】根據(jù)扇形的弧長公式計算即可.【詳解】∵扇形的圓心角為30°,半徑為2cm,∴弧長cm故答案為:D.【考點】本題主要考查扇形的弧長,熟記扇形的弧長公式是解題的關(guān)鍵.3、B【解析】【分析】⊙O最長的弦就是直徑從而不難求得半徑的長.【詳解】解:∵⊙O中最長的弦為8cm,即直徑為8cm,∴⊙O的半徑為4cm.故選:B.【考點】本題考查弦,直徑等知識,記住圓中的最長的弦就是直徑是解題的關(guān)鍵.4、B【解析】【分析】連接AD,如圖,根據(jù)圓周角定理得到,,然后利用互余計算出,從而得到的度數(shù).【詳解】解:連接AD,如圖,AB為的直徑,,,.故選B.【考點】本題主要考查了同弦所對的圓周角相等,直徑所對的圓周角是直角,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進(jìn)行求解.5、D【解析】【分析】連接OB,由垂徑定理得出BD的長;連接OB,再在中,由勾股定理得出方程,解方程即可.【詳解】解:連接OB,如圖所示:由題意得:OC⊥AB,∴AD=BD=AB=2(m),在Rt△OBD中,根據(jù)勾股定理得:OD2+BD2=OB2,即(OB﹣1)2+22=OB2,解得:OB=(m),即這個輪子的半徑長為m,故選:D.【考點】本題主要考查垂徑定理的應(yīng)用以及勾股定理,熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.6、D【解析】【分析】根據(jù)題意作輔助線DE、EF使BCEF為一矩形,從圖中可以看出陰影部分的面積=三角形的面積-(正方形的面積-扇形的面積),依據(jù)面積公式進(jìn)行計算即可得出答案.【詳解】解:作輔助線DE、EF使BCEF為一矩形.則S△CEF=(8+4)×4÷2=24cm2,S正方形ADEF=4×4=16cm2,S扇形ADF==4πcm2,∴陰影部分的面積=24-(16-4π)=.故選:D.【考點】本題主要考查扇形的面積計算,解題的關(guān)鍵是作出輔助線并從圖中看出陰影部分的面積是由哪幾部分組成的.7、A【解析】【分析】根據(jù)已知作出三角形的高線AD,進(jìn)而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,∴cosB==,∴∠B=45°,∵sinC===,∴AD=3,∴CD==4,∴BD=3,則△ABC的面積是:×AD×BC=×3×(3+4)=.故選A.【考點】此題主要考查了解直角三角形的知識,作出AD⊥BC,進(jìn)而得出相關(guān)線段的長度是解決問題的關(guān)鍵.8、A【解析】【分析】在⊙O取點,連接利用圓的內(nèi)接四邊形的性質(zhì)與一條弧所對的圓心角是它所對的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點,連接四邊形為⊙O的內(nèi)接四邊形,.故選A【考點】本題考查的是圓的內(nèi)接四邊形的性質(zhì),同弧所對的圓心角是它所對的圓周角的2倍,掌握相關(guān)知識點是解題的關(guān)鍵.9、C【解析】【分析】根據(jù)作法可得CD平分∠ACB,結(jié)合題意即可求解.【詳解】解:由作法得CD平分∠ACB,

∵AG平分∠CAB,∴E點為△ABC的內(nèi)心故答案為:C.【考點】此題考查了尺規(guī)作圖(角平分線),以及三角形角平分線的性質(zhì),熟練掌握相關(guān)基本性質(zhì)是解題的關(guān)鍵.10、D【解析】【分析】連接OC、OA,利用圓周角定理得出∠AOC=60°,再利用垂徑定理得出AB即可.【詳解】連接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB為弦,點C為的中點,∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故選D.【考點】此題考查圓周角定理,關(guān)鍵是利用圓周角定理得出∠AOC=60°.二、填空題1、12【解析】【分析】連接OA、OD、OF,如圖,利用正多邊形與圓,分別計算⊙O的內(nèi)接正四邊形與內(nèi)接正三角形的中心角得到∠AOD=90°,∠AOF=120°,則∠DOF=30°,然后計算即可得到n的值.【詳解】解:連接OA、OD、OF,如圖,設(shè)這個正多邊形為n邊形,∵AD,AF分別為⊙O的內(nèi)接正四邊形與內(nèi)接正三角形的一邊,∴∠AOD==90°,∠AOF==120°,∴∠DOF=∠AOF-∠AOD=30°,∴n==12,即DF恰好是同圓內(nèi)接一個正十二邊形的一邊.故答案為:12.【考點】本題考查了正多邊形與圓:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內(nèi)接正多邊形,這個圓叫做這個正多邊形的外接圓;熟練掌握正多邊形的有關(guān)概念.2、3【解析】【分析】①根據(jù)點是點關(guān)于的對稱點可知,進(jìn)而可得;②根據(jù)一條弧所對的圓周角等于圓心角的一半即可得結(jié)論;③根據(jù)等弧對等角,可知只有當(dāng)和重合時,,;④作點關(guān)于的對稱點,連接,DF,此時的值最短,等于的長,然后證明DF是的直徑即可得到結(jié)論.【詳解】解:,點是點關(guān)于的對稱點,,,①正確;,∴②正確;的度數(shù)是60°,的度數(shù)是120°,∴只有當(dāng)和重合時,,∴只有和重合時,,③錯誤;作關(guān)于的對稱點,連接,交于點,連接交于點,此時的值最短,等于的長.連接,并且弧的度數(shù)都是60°,是的直徑,即,∴當(dāng)點與點重合時,的值最小,最小值是10,∴④正確.故答案為:3.【考點】本題考查了圓的綜合知識,涉及圓周角、圓心角、弧、弦的關(guān)系、最短距離的確定等,掌握圓的基本性質(zhì)并靈活運用是解題關(guān)鍵.3、2π【解析】【詳解】分析:根據(jù)弧長公式可得結(jié)論.詳解:根據(jù)題意,扇形的弧長為=2π,故答案為2π點睛:本題主要考查弧長的計算,熟練掌握弧長公式是解題的關(guān)鍵.4、a.【解析】【分析】作DE的中垂線交CD于G,則G為的圓心,H為的圓心,連接EF,GH,交于點O,連接GF,F(xiàn)H,HE,EG,依據(jù)勾股定理可得GE=FG=a,根據(jù)四邊形EGFH是菱形,四邊形BCGH是矩形,即可得到Rt△OEG中,OE=a,即可得到EF=a.【詳解】如圖,作DE的中垂線交CD于G,則G為的圓心,同理可得,H為的圓心,連接EF,GH,交于點O,連接GF,F(xiàn)H,HE,EG,設(shè)GE=GD=x,則CG=2a-x,CE=a,Rt△CEG中,(2a-x)2+a2=x2,解得x=a,∴GE=FG=a,同理可得,EH=FH=a,∴四邊形EGFH是菱形,四邊形BCGH是矩形,∴GO=BC=a,∴Rt△OEG中,OE=,∴EF=a,故答案為a.【考點】本題主要考查了正方形的性質(zhì)以及相交兩圓的性質(zhì),相交兩圓的連心線(經(jīng)過兩個圓心的直線),垂直平分兩圓的公共弦.注意:在習(xí)題中常常通過公共弦在兩圓之間建立聯(lián)系.5、6【解析】【分析】根據(jù)多邊形的內(nèi)角和公式求出扇形的圓心角,然后按扇形面積公式列方程求解計算即可.【詳解】解:∵正六邊形的內(nèi)角是120度,陰影部分的面積為24π,設(shè)正六邊形的邊長為r,∴,解得r=6.(負(fù)根舍去)則正六邊形的邊長為6.故答案為:【考點】本題考查的是正多邊形與圓,扇形面積,掌握以上知識是解題的關(guān)鍵.三、解答題1、(1)證明見詳解(2)(3)為定值,【解析】【分析】(1)由,,可證明,由圓周角定理可知,可證明,再借助對頂角相等可知,進(jìn)而證明,即可推導(dǎo)出;(2)由(1)可知,AC為DG的垂直平分線,即有,連接OA、OB、OC、OD,過點O作,,垂足分別為M、N,利用垂徑定理和圓周角定理推導(dǎo),,,;再借助,可證明,進(jìn)而得到,即可證明,即有;在中,利用勾股定理計算OC的長,即可得到⊙O的半徑;(3)過點H作,垂足分別為P、Q,過點D作于點K,由已知條件、三角函數(shù)函數(shù)及含30°角的直角三角形的性質(zhì),先計算出,,再根據(jù),可得出,整理可得.(1)證明:∵,,∴,∴,,∵,∴,∴,∵,∴,∴;(2)解:由(1)可知,,,∴,即AC為DG的垂直平分線,∴,如圖1,連接OA、OB、OC、OD,過點O作,,垂足分別為M、N,則有,,,,,∴,同理,,∵,即,,∵,∴,在和中,,∴,∴,在中,,即圓⊙O的半徑為;(3)為定值,且,證明如下:如圖2,過點H作,垂足分別為P、Q,過點D作于點K,∵,∴,∵,,∴,即,∴,∵,,且,∴,∵,∴在中,,即有,∵,∴,即∴,∴.【考點】本題主要考查了圓周角定理、垂徑定理、等腰三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、角平分線的性質(zhì)及利用三角函數(shù)解直角三角形等知識,綜合性較強(qiáng),解題關(guān)鍵是熟練掌握相關(guān)知識并能夠綜合運用.2、見詳解.【解析】【分析】要作圓,即需要先確定其圓心,先作∠A的角平分線,再作線段BC的垂直平分線相交于點O,即O點為圓心.【詳解】解:根據(jù)題意可知,先作∠A的角平分線,再作線段BC的垂直平分線相交于O,即以O(shè)點為圓心,OB為半徑,作圓O,如下圖所示:【考點】此題主要考查了學(xué)生對確定圓心的作法,要求學(xué)生熟練掌握應(yīng)用.3、(1)詳見解析;(2)110°.【解析】【分析】(1)連接AD,利用直徑所對的圓周角為直角,可得AD⊥BC,再根據(jù)CD=BD,故AD垂直平分BC,根據(jù)垂直平分線上的點到線段兩個端點的距離相等,可得:AB=AC,再根據(jù)等邊對等角和同弧所對的圓周角相等即可得到∠E=∠C;(2)根據(jù)內(nèi)接四邊形的性質(zhì):四邊形的外角等于它的內(nèi)對角,可得∠CFD=∠E=55°,再利用外角的性質(zhì)即可求出∠BDF.【詳解】(1)證明:連接AD,如圖所示:∵AB是⊙O的直徑,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,∵∠B=∠E,∴∠E=∠C;(2)解:∵四邊形AEDF是⊙O的內(nèi)接四邊形,∴∠AFD=180°﹣∠E,∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,由(1)得:∠E=∠C=55°,∴∠BDF=∠C+∠CFD=55°+55°=110°.【考點】此題考查的是(1)直徑所對的圓周角是直角、垂直平分線的性質(zhì)和同弧所對的圓周角相等;(2)內(nèi)接四邊形的性質(zhì).4、12【解析】【分析】連接OB、OC,如圖,利用圓周角定理得到∠BOC=60°,則可判斷△O

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論