版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆湖南省長(zhǎng)沙市開(kāi)福區(qū)長(zhǎng)沙市第一中學(xué)數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.橢圓的長(zhǎng)軸長(zhǎng)為()A. B.C. D.2.若函數(shù),滿足且,則()A.1 B.2C.3 D.43.設(shè)函數(shù),當(dāng)自變量t由2變到2.5時(shí),函數(shù)的平均變化率是()A.5.25 B.10.5C.5.5 D.114.已知為等差數(shù)列,且,,則()A. B.C. D.5.設(shè)a,b,c非零實(shí)數(shù),且,則()A. B.C. D.6.雙曲線的左、右焦點(diǎn)分別為、,P為雙曲線C的右支上一點(diǎn).以O(shè)為圓心a為半徑的圓與相切于點(diǎn)M,且,則該雙曲線的漸近線為()A. B.C. D.7.在某次海軍演習(xí)中,已知甲驅(qū)逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護(hù)衛(wèi)艦在甲驅(qū)逐艦的正西方向,若測(cè)得乙護(hù)衛(wèi)艦在航母的南偏西45°方向,則甲驅(qū)逐艦與乙護(hù)衛(wèi)艦的距離為()A.海里 B.海里C.海里 D.海里8.已知向量,,則等于()A. B.C. D.9.橢圓以坐標(biāo)軸為對(duì)稱(chēng)軸,經(jīng)過(guò)點(diǎn),且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,則橢圓的標(biāo)準(zhǔn)方程為()A. B.C.或 D.或10.在區(qū)間內(nèi)隨機(jī)地取出兩個(gè)數(shù),則兩數(shù)之和小于的概率是()A. B.C. D.11.中國(guó)剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點(diǎn)生活或配合其他民俗活動(dòng)的民間藝術(shù).如圖所示的圓形剪紙中,正六邊形的所有頂點(diǎn)都在該圓上,若在該圓形剪紙的內(nèi)部投擲一點(diǎn),則該點(diǎn)恰好落在正六邊形內(nèi)部的概率為()A. B.C. D.12.已知數(shù)列為等比數(shù)列,則“,”是“為遞減數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.正三棱柱的底面邊長(zhǎng)和高均為2,點(diǎn)為側(cè)棱的中點(diǎn),連接,,則點(diǎn)到平面的距離為_(kāi)_____.14.用一個(gè)平面去截半徑為5cm的球,截面面積是則球心到截面的距離為_(kāi)______15.已知三角形OAB頂點(diǎn),,,則過(guò)B點(diǎn)的中線長(zhǎng)為_(kāi)_____.16.已知,,若x,a,b,y成等比數(shù)列,x,c,d,y成等差數(shù)列,則的最小值為_(kāi)____________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)2020年8月,總書(shū)記對(duì)制止餐飲浪費(fèi)行為作出重要指示,要求進(jìn)一步加強(qiáng)宣傳教育,切實(shí)培養(yǎng)節(jié)約習(xí)慣,在全社會(huì)營(yíng)造浪費(fèi)可恥、節(jié)約光榮的氛圍.為貫徹總書(shū)記指示,大慶市某學(xué)校食堂從學(xué)生中招募志愿者,協(xié)助食堂宣傳節(jié)約糧食的相關(guān)活動(dòng).現(xiàn)已有高一63人、高二42人,高三21人報(bào)名參加志愿活動(dòng).根據(jù)活動(dòng)安排,擬采用分層抽樣的方法,從已報(bào)名的志愿者中抽取12名志愿者,參加為期20天的第一期志愿活動(dòng)(1)第一期志愿活動(dòng)需從高一、高二、高三報(bào)名的學(xué)生中各抽取多少人?(2)現(xiàn)在要從第一期志愿者中的高二、高三學(xué)生中抽取2人粘貼宣傳標(biāo)語(yǔ),求抽出兩人都是高二學(xué)生的概率是多少?(3)食堂每天約有400人就餐,其中一組志愿者的任務(wù)是記錄學(xué)生每天倒掉的剩菜剩飯的重量(單位:公斤),以10天為單位來(lái)衡量宣傳節(jié)約糧食的效果.在一個(gè)周期內(nèi),這組志愿者記錄的數(shù)據(jù)如下:前10天剩菜剩飯的重量為:后天剩菜剩飯的重量為:借助統(tǒng)計(jì)中的圖、表、數(shù)字特征等知識(shí),分析宣傳節(jié)約糧食活動(dòng)的效果(選擇一種方法進(jìn)行說(shuō)明即可)18.(12分)已知雙曲線的一條漸近線方程為,且雙曲線C過(guò)點(diǎn).(1)求雙曲線C的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)M的直線與雙曲線C的左右支分別交于A、B兩點(diǎn),是否存在直線AB,使得成立,若存在,求出直線AB的方程;若不存在,請(qǐng)說(shuō)明理由.19.(12分)如圖,在四棱錐中,平面底面ABCD,,,,,(1)證明:是直角三角形;(2)求平面PCD與平面PAB的夾角的余弦值20.(12分)證明:是無(wú)理數(shù).(我們知道任意一個(gè)有理數(shù)都可以寫(xiě)成形如(m,n互質(zhì),)的形式)21.(12分)已知,,分別為三個(gè)內(nèi)角,,的對(duì)邊,.(Ⅰ)求;(Ⅱ)若=2,的面積為,求,.22.(10分)為慶祝中國(guó)共產(chǎn)黨成立100周年,某校舉行了黨史知識(shí)競(jìng)賽,在必答題環(huán)節(jié),甲、乙兩位選手分別從3道選擇題(1)甲至少抽到1道填空題(2)甲答對(duì)的題數(shù)比乙多的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由橢圓方程可直接求得.【詳解】由橢圓方程知:,長(zhǎng)軸長(zhǎng)為.故選:D.2、C【解析】先取,得與之間的關(guān)系,然后根據(jù)導(dǎo)數(shù)的運(yùn)算直接求導(dǎo),代值可得.【詳解】取,則有,即,又因?yàn)樗?,所以,所?故選:C3、B【解析】利用平均變化率的公式即得.【詳解】∵,∴.故選:B.4、B【解析】由已知條件求出等差數(shù)列的公差,從而可求出【詳解】設(shè)等差數(shù)列的公差為,由,,得,解得,所以,故選:B5、C【解析】對(duì)于A、B、D:取特殊值否定結(jié)論;對(duì)于C:利用作差法證明.【詳解】對(duì)于A:取符合已知條件,但是不成立.故A錯(cuò)誤;對(duì)于B:取符合已知條件,但是,所以不成立.故B錯(cuò)誤;對(duì)于C:因?yàn)?,所?故C正確;對(duì)于D:取符合已知條件,但是,所以不成立.故D錯(cuò)誤;故選:C.6、A【解析】連接、,利用中位線定理和雙曲線定義構(gòu)建參數(shù)關(guān)系,即求得漸近線方程.【詳解】如圖,連接、,∵M(jìn)是的中點(diǎn),∴是的中位線,∴,且,根據(jù)雙曲線的定義,得,∴,∵與以原點(diǎn)為圓心a為半徑的圓相切,∴,可得,中,,即得,,解得,即,得.由此得雙曲線的漸近線方程為.故選:A.【點(diǎn)睛】本題考查了雙曲線的定義的應(yīng)用和漸近線的求法,屬于中檔題.7、A【解析】利用正弦定理可求解.【詳解】設(shè)甲驅(qū)逐艦、乙護(hù)衛(wèi)艦、航母所在位置分別為A,B,C,則,,.在△ABC中,由正弦定理得,即,解得,即甲驅(qū)逐艦與乙護(hù)衛(wèi)艦的距離為海里故選:A8、C【解析】根據(jù)題意,結(jié)合空間向量的坐標(biāo)運(yùn)算,即可求解.【詳解】由,,得,因此.故選:C.9、C【解析】分情況討論焦點(diǎn)所在位置及橢圓方程.【詳解】當(dāng)橢圓的焦點(diǎn)在軸上時(shí),由題意過(guò)點(diǎn),故,,橢圓方程為,當(dāng)橢圓焦點(diǎn)在軸上時(shí),,,橢圓方程為,故選:C.10、C【解析】利用幾何概型的面積型,確定兩數(shù)之和小于的區(qū)域,進(jìn)而根據(jù)面積比求概率.【詳解】由題意知:若兩個(gè)數(shù)分別為,則,如上圖示,陰影部分即為,∴兩數(shù)之和小于的概率.故選:C11、D【解析】設(shè)圓的半徑,求出圓的面積與正六邊形的面積,再根據(jù)幾何概型的概率公式計(jì)算可得;【詳解】解:設(shè)圓的半徑,則,則,所以,所以在該圓形剪紙的內(nèi)部投擲一點(diǎn),則該點(diǎn)恰好落在正六邊形內(nèi)部的概率;故選:D12、A【解析】本題可依次判斷“,”是否是“為遞減數(shù)列”的充分條件以及必要條件,即可得出結(jié)果.【詳解】若等比數(shù)列滿足、,則數(shù)列為遞減數(shù)列,故“,”是“為遞減數(shù)列”的充分條件,因?yàn)槿舻缺葦?shù)列滿足、,則數(shù)列也是遞減數(shù)列,所以“,”不是“為遞減數(shù)列”的必要條件,綜上所述,“,”是“為遞減數(shù)列”的充分不必要條件,故選:A.【點(diǎn)睛】本題考查充分條件以及必要條件的判定,考查等比數(shù)列以及遞減數(shù)列的相關(guān)性質(zhì),體現(xiàn)了基礎(chǔ)性和綜合性,考查推理能力,是簡(jiǎn)單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】建立空間直角坐標(biāo)系,利用空間向量求點(diǎn)面距離的公式可以直接求出.【詳解】如圖,建立空間直角坐標(biāo)系,為的中點(diǎn),由已知,,,,,所以,,設(shè)平面的法向量為,,即:,取,得,,則點(diǎn)到平面的距離為.故答案為:.14、4cm【解析】根據(jù)圓面積公式算出截面圓的半徑,利用球的截面圓性質(zhì)與勾股定理算出球心到截面的距離【詳解】解:設(shè)截面圓的半徑為r,截面的面積是,,可得又球的半徑為5cm,根據(jù)球的截面圓性質(zhì),可得截面到球心的距離為故答案為:4cm【點(diǎn)睛】本題主要考查了球的截面圓性質(zhì)、勾股定理等知識(shí),考查了空間想象能力,屬于基礎(chǔ)題15、【解析】先求出中點(diǎn)坐標(biāo),再由距離公式得出過(guò)B點(diǎn)的中線長(zhǎng).【詳解】由中點(diǎn)坐標(biāo)公式可得中點(diǎn),則過(guò)B點(diǎn)的中線長(zhǎng)為.故答案為:16、4【解析】根據(jù)等差數(shù)列和等比數(shù)列性質(zhì)把用表示,然后由基本不等式得最小值【詳解】由題意,,所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立故答案為:4三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)6,4,2;(2);(3)答案見(jiàn)解析.【解析】(1)先求出抽樣比,然后每次按比例抽取即可求出;(2)先求出抽出兩人的基本事件,再求出兩人都是高二學(xué)生包含的基本事件,即可求出概率;(3)可求出平均值進(jìn)行判斷;也可畫(huà)出莖葉圖觀察判斷.【詳解】解:(1)報(bào)名的學(xué)生共有126人,抽取的比例為,所以高一抽取人,高二抽取人,高三抽取人.(2)記高二四個(gè)學(xué)生為1,2,3,4,高三兩個(gè)學(xué)生為5,6,抽出兩人表示為(x,y),則抽出兩人的基本事件為(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15個(gè)基本事件,其中高二學(xué)生都在同一組包含(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6個(gè)基本事件.記抽出兩人都是高二學(xué)生為事件,則,所以高二學(xué)生都在同一組的概率是.(3)法一:(數(shù)字特征)前10天的平均值為23.5,后10天的平均值為20.5,因?yàn)?0.5<23.5,所以宣傳節(jié)約糧食活動(dòng)的效果很好.法二:(莖葉圖)畫(huà)出莖葉圖因?yàn)榍?0天的重量集中在23、24附近,而后10天的重量集中在20附近,所以節(jié)約宣傳后剩飯剩菜明顯減少,宣傳效果很好.18、(1);(2)存在,直線AB的方程為:或.【解析】(1)根據(jù)給定的漸近線方程及所過(guò)的點(diǎn)列式計(jì)算作答.(2)假定存在符合條件的直線AB,設(shè)出其方程,借助弦長(zhǎng)公式計(jì)算判斷作答.【小問(wèn)1詳解】依題意,,解得:,所以雙曲線C的標(biāo)準(zhǔn)方程是.【小問(wèn)2詳解】假定存在直線AB,使得成立,顯然不垂直于y軸,否則,設(shè)直線:,由消去x并整理得:,因直線與雙曲線C的左右支分別交于A、B兩點(diǎn),設(shè),于是得,則有,即或,因此,,解得,所以存在直線AB,使得成立,此時(shí),直線AB的方程為:或.19、(1)證明見(jiàn)解析(2)【解析】(1)連接BD,在四邊形ABCD中求得,在中,取得,得到,由線面垂直的性質(zhì)證得平面,得到,再由線面垂直的判定定理,證得平面PBD,進(jìn)而得到,即可證得是直角三角形(2)以為原點(diǎn),以所在直線為x軸,過(guò)點(diǎn)且與平行直線為y軸,所在直線為z軸,建立的空間直角坐標(biāo)系,分別求得平面和平面的法向量,利用向量的夾角公式,即可求解.【小問(wèn)1詳解】證明:如圖所示,連接BD,因?yàn)樗倪呅沃?,可得,,,所以,,則在中,由余弦定理可得,所以,所以因?yàn)槠矫娴酌?,平面底面,底面ABCD,所以平面PAB,因?yàn)槠矫鍼AB,所以,因?yàn)?,,所以平面PBD因?yàn)槠矫鍼BD,所以,即是直角三角形【小問(wèn)2詳解】解:由(1)知平面PAB,取AB的中點(diǎn)O,連接PO,因?yàn)?,所以,因?yàn)槠矫?,平面底面,平面底面,所以底?以為原點(diǎn),以所在直線為x軸,過(guò)點(diǎn)且與平行的直線為y軸,所在直線為z軸,建立如圖所示的空間直角坐標(biāo)系,設(shè),則,,,,,可得,,,設(shè)平面的一個(gè)法向量為,則,令,可得,,所以,因?yàn)槭瞧矫娴囊粋€(gè)法向量,所以,即平面與平面的夾角的余弦值為20、詳見(jiàn)解析【解析】利用反證法,即可推得矛盾.【詳解】假設(shè)有理數(shù),則,則,為整數(shù),的尾數(shù)只能是0,1,4,5,6,9,的尾數(shù)只能是0,1,4,5,6,9,則的尾數(shù)是0,2,8,由得,尾數(shù)為0,則的尾數(shù)是0,而的尾數(shù)為0或5,這與為最簡(jiǎn)分?jǐn)?shù),的最大公約數(shù)是1,相矛盾,所以假設(shè)不正確,是無(wú)理數(shù).21、(1)(2)=2【解析】(Ⅰ)由及正弦定理得由于,所以,又,故.(Ⅱ)的面積==,故=4,而故=8,解得=222、(1);(2).【解析】(1)把3道選擇題(2)設(shè),分別表示甲答對(duì)1道題,2道題的事件,,分別表示乙答對(duì)0道題,1道題的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年三亞城市職業(yè)學(xué)院馬克思主義基本原理概論期末考試模擬題附答案
- 2025云南省臨滄市社會(huì)工作聯(lián)合會(huì)招聘實(shí)習(xí)生(2人)備考題庫(kù)附答案
- 水聲壓電器件制造工安全風(fēng)險(xiǎn)考核試卷含答案
- 腌臘發(fā)酵制品加工工沖突管理模擬考核試卷含答案
- 套筒卷制工班組協(xié)作考核試卷含答案
- 硅樹(shù)脂生產(chǎn)工崗前安全意識(shí)考核試卷含答案
- 白酒制曲工安全實(shí)操水平考核試卷含答案
- 2024年淮南聯(lián)合大學(xué)馬克思主義基本原理概論期末考試題附答案
- 2024年洛陽(yáng)市直遴選筆試真題匯編附答案
- 2024年遼寧科技大學(xué)輔導(dǎo)員考試筆試真題匯編附答案
- 復(fù)方蒲公英注射液在銀屑病中的應(yīng)用研究
- 住培中醫(yī)病例討論-面癱
- 設(shè)備安裝施工方案范本
- 衛(wèi)生院副院長(zhǎng)先進(jìn)事跡材料
- 復(fù)發(fā)性抑郁癥個(gè)案查房課件
- 網(wǎng)絡(luò)直播創(chuàng)業(yè)計(jì)劃書(shū)
- 人類(lèi)學(xué)概論(第四版)課件 第1、2章 人類(lèi)學(xué)要義第一節(jié)何為人類(lèi)學(xué)、人類(lèi)學(xué)的理論發(fā)展過(guò)程
- 《功能性食品學(xué)》第七章-輔助改善記憶的功能性食品
- 幕墻工程竣工驗(yàn)收?qǐng)?bào)告2-2
- 1、工程竣工決算財(cái)務(wù)審計(jì)服務(wù)項(xiàng)目投標(biāo)技術(shù)方案
- 改進(jìn)維持性血液透析患者貧血狀況PDCA
評(píng)論
0/150
提交評(píng)論