2026屆山東省蓬萊第二中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第1頁
2026屆山東省蓬萊第二中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第2頁
2026屆山東省蓬萊第二中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第3頁
2026屆山東省蓬萊第二中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第4頁
2026屆山東省蓬萊第二中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆山東省蓬萊第二中學(xué)高二上數(shù)學(xué)期末統(tǒng)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.關(guān)于x的方程在內(nèi)有解,則實(shí)數(shù)m的取值范圍()A. B.C. D.2.復(fù)數(shù),且z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第二象限,則實(shí)數(shù)m的值可以為()A.2 B.C. D.03.已知三個頂點(diǎn)都在拋物線上,且為拋物線的焦點(diǎn),若,則()A.6 B.8C.10 D.124.正方體中,E、F分別是與的中點(diǎn),則直線ED與所成角的余弦值是()A. B.C. D.5.已知直線與圓相切,則的值是()A. B.C. D.6.已知直線l1:mx-2y+1=0,l2:x-(m-1)y-1=0,則“m=2”是“l(fā)1平行于l2”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件7.已知,那么函數(shù)在x=π處的瞬時變化率為()A. B.0C. D.8.已知A,B,C三點(diǎn)不共線,O是平面ABC外一點(diǎn),下列條件中能確定點(diǎn)M與點(diǎn)A,B,C一定共面的是A. B.C. D.9.已知兩定點(diǎn)和,動點(diǎn)在直線上移動,橢圓C以A,B為焦點(diǎn)且經(jīng)過點(diǎn)P,則橢圓C的短軸的最小值為()A. B.C. D.10.設(shè),分別是雙曲線:的左、右焦點(diǎn),過點(diǎn)作的一條漸近線的垂線,垂足為,,為坐標(biāo)原點(diǎn),則雙曲線的離心率為()A. B.2C. D.11.直線與直線,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.雙曲線的焦點(diǎn)到漸近線的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一個物體的運(yùn)動方程為其中位移的單位是米,時間的單位是秒,那么物體在秒末的瞬時速度是__________米/秒14.在等差數(shù)列中,,公差,則_________15.圓心在x軸上且過點(diǎn)的一個圓的標(biāo)準(zhǔn)方程可以是______16.已知函數(shù)在上單調(diào)遞減,則的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項(xiàng)和為,且,,數(shù)列是公差不為0的等差數(shù)列,滿足,且,,成等比數(shù)列.(1)求數(shù)列和通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.18.(12分)已知斜率為1的直線交拋物線:()于,兩點(diǎn),且弦中點(diǎn)的縱坐標(biāo)為2.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)記點(diǎn),過點(diǎn)作兩條直線,分別交拋物線于,(,不同于點(diǎn))兩點(diǎn),且的平分線與軸垂直,求證:直線的斜率為定值.19.(12分)如圖,是平行四邊形,已知,,平面平面.(1)證明:;(2)若,求平面與平面所成二面角的平面角的余弦值20.(12分)已知函數(shù)(1)討論的單調(diào)性;(2)當(dāng)時,證明21.(12分)如圖①,等腰梯形中,,分別為的中點(diǎn),,現(xiàn)將四邊形沿折起,使平面平面,得到如圖②所示的多面體,在圖②中:(1)證明:平面平面;(2)求四棱錐的體積.22.(10分)如圖所示,橢圓的左、右焦點(diǎn)分別為、,左、右頂點(diǎn)分別為、,為橢圓上一點(diǎn),連接并延長交橢圓于點(diǎn),已知橢圓的離心率為,△的周長為8(1)求橢圓的方程;(2)設(shè)點(diǎn)的坐標(biāo)為①當(dāng),,成等差數(shù)列時,求點(diǎn)的坐標(biāo);②若直線、分別與直線交于點(diǎn)、,以為直徑的圓是否經(jīng)過某定點(diǎn)?若經(jīng)過定點(diǎn),求出定點(diǎn)坐標(biāo);若不經(jīng)過定點(diǎn),請說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】當(dāng)時,顯然不成立,當(dāng)時,分離變量,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.【詳解】當(dāng)時,可得顯然不成立;當(dāng)時,由于方程可轉(zhuǎn)化為,令,可得,當(dāng)時,,函數(shù)單調(diào)遞增;當(dāng)時,,函數(shù)單調(diào)遞減,所以當(dāng)時,函數(shù)取唯一的極大值,也是最大值,所以,所以,即,所以實(shí)數(shù)m的取值范圍.故選:A.2、B【解析】根據(jù)復(fù)數(shù)的幾何意義求出的范圍,即可得出答案.【詳解】解:當(dāng)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第二象限時,則有,可得,結(jié)合選項(xiàng)可知,B正確故選:B3、D【解析】設(shè),,,由向量關(guān)系化為坐標(biāo)關(guān)系,再結(jié)合拋物線的焦半徑公式即可計算【詳解】由得焦點(diǎn),準(zhǔn)線方程為,設(shè),,由得則,化簡得所以故選:D4、A【解析】以A為原點(diǎn)建立空間直角坐標(biāo)系,求出E,F,D,D1點(diǎn)的坐標(biāo),利用向量求法求解【詳解】如圖,以A為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)正方體的邊長為2,則,,,,,直線與所成角的余弦值為:.故選:A【點(diǎn)睛】本題考查異面直線所成角的求法,屬于基礎(chǔ)題.5、D【解析】直線與圓相切,直接通過求解即可.【詳解】因?yàn)橹本€與圓相切,所以圓心到直線的距離,所以,.故選:D6、C【解析】利用兩直線平行的等價條件求得m,再結(jié)合充分必要條件進(jìn)行判斷即可.【詳解】由直線l1平行于l2得-m(m-1)=1×(-2),得m=2或m=-1,經(jīng)驗(yàn)證,當(dāng)m=-1時,直線l1與l2重合,舍去,所以“m=2”是“l(fā)1平行于l2”的充要條件,故選C.【點(diǎn)睛】本題考查兩直線平行的條件,準(zhǔn)確計算是關(guān)鍵,注意充分必要條件的判斷是基礎(chǔ)題7、A【解析】利用導(dǎo)數(shù)運(yùn)算法則求出,根據(jù)導(dǎo)數(shù)的定義即可得到結(jié)論【詳解】由題設(shè),,所以,函數(shù)在x=π處瞬時變化率為,故選:A8、D【解析】首先利用坐標(biāo)法,排除錯誤選項(xiàng),然后對符合的選項(xiàng)驗(yàn)證存在使得,由此得出正確選項(xiàng).【詳解】不妨設(shè).對于A選項(xiàng),,由于的豎坐標(biāo),故不在平面上,故A選項(xiàng)錯誤.對于B選項(xiàng),,由于的豎坐標(biāo),故不在平面上,故B選項(xiàng)錯誤.對于C選項(xiàng),,由于的豎坐標(biāo),故不在平面上,故C選項(xiàng)錯誤.對于D選項(xiàng),,由于的豎坐標(biāo)為,故在平面上,也即四點(diǎn)共面.下面證明結(jié)論一定成立:由,得,即,故存在,使得成立,也即四點(diǎn)共面.故選:D.【點(diǎn)睛】本小題主要考查空間四點(diǎn)共面的證明方法,考查空間向量的線性運(yùn)算,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.9、B【解析】根據(jù)題意,點(diǎn)關(guān)于直線對稱點(diǎn)的性質(zhì),以及橢圓的定義,即可求解.【詳解】根據(jù)題意,設(shè)點(diǎn)關(guān)于直線的對稱點(diǎn),則,解得,即.根據(jù)橢圓的定義可知,,當(dāng)、、三點(diǎn)共線時,長軸長取最小值,即,由且,得,因此橢圓C的短軸的最小值為.故選:B.10、D【解析】先求過右焦點(diǎn)且與漸近線垂直的直線方程,與漸近線方程聯(lián)立求點(diǎn)P的坐標(biāo),再用兩點(diǎn)間的距離公式,結(jié)合已知條件,得到關(guān)于a,c的關(guān)系式.【詳解】雙曲線的左右焦點(diǎn)分別為、,一條漸近線方程為,過與這條漸近線垂直的直線方程為,由,得到點(diǎn)P的坐標(biāo)為,又因?yàn)?,所以,所以,所?故選:D11、A【解析】根據(jù)直線與直線的垂直,列方程,求出,再判斷充分性和必要性即可.【詳解】解:若,則,解得或,即或,所以”是“充分不必要條件.故選:A.【點(diǎn)睛】本題考查直線一般式中直線與直線垂直的系數(shù)關(guān)系,考查充分性和必要性的判斷,是基礎(chǔ)題.12、D【解析】根據(jù)題意,由雙曲線的標(biāo)準(zhǔn)方程可得雙曲線的焦點(diǎn)坐標(biāo)以及漸近線方程,由點(diǎn)到直線的距離公式計算可得答案.【詳解】解:根據(jù)題意,雙曲線的方程為,其焦點(diǎn)坐標(biāo)為,其漸近線方程為,即,則其焦點(diǎn)到漸近線的距離;故選D.【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì),關(guān)鍵是求出雙曲線的漸近線與焦點(diǎn)坐標(biāo).二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】,14、15【解析】由等差數(shù)列通項(xiàng)公式直接可得.【詳解】.故答案為:1515、【解析】確定x軸上一個點(diǎn)做圓心,求出半徑,再寫出圓的標(biāo)準(zhǔn)方程即可.【詳解】以x軸上的點(diǎn)為圓心,則半徑,所以圓的標(biāo)準(zhǔn)方程為:.故答案為:16、【解析】先求導(dǎo),求出函數(shù)的單調(diào)遞減區(qū)間,由即可求解.【詳解】,令,得,即的單調(diào)遞減區(qū)間是,又在上單調(diào)遞減,可得,即.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)根據(jù),求出是以1為首項(xiàng),3為公比的等比數(shù)列,求出的通項(xiàng)公式,求出的公差,進(jìn)而求出的通項(xiàng)公式;(2)分組求和.【小問1詳解】因?yàn)棰?,所以?dāng)時,②,①-②得:,即③,令得:,滿足③,綜上:是以1為首項(xiàng),3為公比的等比數(shù)列,故,設(shè)的公差為d,則,因?yàn)?,所以,解得:?(舍去),所以【小問2詳解】,則18、(1);(2)見解析.【解析】(1)涉及中點(diǎn)弦,用點(diǎn)差法處理即可求得,進(jìn)而求得拋物線方程;(2)由的平分線與軸垂直,可知直線,的斜率存在,且斜率互為相反數(shù),且不等于零,設(shè),直線,則直線分別和拋物線方程聯(lián)立,解得利用,結(jié)合直線方程,即可證得直線的斜率為定值.【詳解】(1)設(shè),則,兩式相減,得:由弦中點(diǎn)縱坐標(biāo)為2,得,故.所以拋物線的標(biāo)準(zhǔn)方程.(2)由的平分線與軸垂直,可知直線,的斜率存在,且斜率互為相反數(shù),且不等于零,設(shè)直線由得由點(diǎn)在拋物線上,可知上述方程的一個根為.即,同理.直線的斜率為定值.【點(diǎn)睛】本題考查應(yīng)用點(diǎn)差法處理中點(diǎn)弦問題,直線與拋物線中,斜率為定值問題,考查分析問題的能力,考查學(xué)生的計算能力,難度較難.19、(1)見解析;(2).【解析】(1)推導(dǎo)出,取BC的中點(diǎn)F,連結(jié)EF,可推出,從而平面,進(jìn)而,由此得到平面,從而;(2)以為坐標(biāo)原點(diǎn),,所在直線分別為,軸,以過點(diǎn)且與平行的直線為軸,建立空間直角坐標(biāo)系,利用向量法能求出平面與平面所成二面角的余弦值【詳解】(1)∵是平行四邊形,且∴,故,即取BC的中點(diǎn)F,連結(jié)EF.∵∴又∵平面平面∴平面∵平面∴∵平面∴平面,∵平面∴(2)∵,由(Ⅰ)得以為坐標(biāo)原點(diǎn),所在直線分別為軸,建立空間直角坐標(biāo)系(如圖),則∴設(shè)平面的法向量為,則,即得平面一個法向量為由(1)知平面,所以可設(shè)平面的法向量為設(shè)平面與平面所成二面角的平面角為,則即平面與平面所成二面角的平面角的余弦值為.【點(diǎn)睛】用空間向量求解立體幾何問題的注意點(diǎn)(1)建立坐標(biāo)系時要確保條件具備,即要證明得到兩兩垂直的三條直線,建系后要準(zhǔn)確求得所需點(diǎn)的坐標(biāo)(2)用平面的法向量求二面角的大小時,要注意向量的夾角與二面角大小間的關(guān)系,這點(diǎn)需要通過觀察圖形來判斷二面角是銳角還是鈍角,然后作出正確的結(jié)論20、(1)答案見解析(2)證明見解析【解析】(1)求導(dǎo)得,進(jìn)而分和兩種情況討論求解即可;(2)根據(jù)題意證明,進(jìn)而令,再結(jié)合(1)得,研究函數(shù)的性質(zhì)得,進(jìn)而得時,,即不等式成立.【小問1詳解】解:函數(shù)的定義域?yàn)?,,∴?dāng)時,在上恒成立,故函數(shù)在區(qū)間上單調(diào)遞增;當(dāng)時,由得,由得,即函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;綜上,當(dāng)時,在區(qū)間上單調(diào)遞增;當(dāng)時,在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;【小問2詳解】證明:因?yàn)闀r,證明,只需證明,由(1)知,當(dāng)時,函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;所以.令,則,所以當(dāng)時,,函數(shù)單調(diào)遞減;當(dāng)時,,函數(shù)單調(diào)遞增,所以.所以時,,所以當(dāng)時,21、(1)證明見解析.(2)2【解析】(1)根據(jù)面面平行的判定定理結(jié)合已知條件即可證明;(2)將所求四棱錐的體積轉(zhuǎn)化為求即可.【小問1詳解】證明:因?yàn)?,面,面,所以面,同理面,又因?yàn)槊?所以面面.【小問2詳解】解:因?yàn)樵趫D①等腰梯形中,分別為的中點(diǎn),所以,在圖②多面體中,因?yàn)椋?,,所以?因?yàn)?,面面,面,面?所以面,又因?yàn)槊?,所以,在直角三角形中,因?yàn)?所以,同理,,所以,則,有,所以.所以四棱錐的體積為2.22、(1);(2)①或;②過定點(diǎn)、,理由見解析.【解析】(1)由焦點(diǎn)三角形的周長、離心率求橢圓參數(shù),即可得橢圓方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論