版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆安徽省肥東縣圣泉中學(xué)高二上數(shù)學(xué)期末綜合測(cè)試模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在四面體中,為的中點(diǎn),為棱上的點(diǎn),且,則()A. B.C. D.2.日常飲用水通常都是經(jīng)過凈化的,隨若水純凈度的提高,所需凈化費(fèi)用不斷增加.已知水凈化到純凈度為時(shí)所需費(fèi)用單位:元為那么凈化到純凈度為時(shí)所需凈化費(fèi)用的瞬時(shí)變化率是()元/t.A. B.C. D.3.在區(qū)間內(nèi)隨機(jī)取一個(gè)數(shù)則該數(shù)滿足的概率為()A. B.C. D.4.已知奇函數(shù)是定義在R上的可導(dǎo)函數(shù),的導(dǎo)函數(shù)為,當(dāng)時(shí),有,則不等式的解集為()A. B.C. D.5.用數(shù)學(xué)歸納法時(shí),從“k到”左邊需增乘的代數(shù)式是()A. B.C. D.6.已知直線l與圓交于A,B兩點(diǎn),點(diǎn)滿足,若AB的中點(diǎn)為M,則的最大值為()A. B.C. D.7.已知橢圓的長軸長,短軸長,焦距長成等比數(shù)列,則橢圓離心率為()A. B.C. D.8.設(shè)是定義在R上的函數(shù),其導(dǎo)函數(shù)為,滿足,若,則()A. B.C. D.a,b的大小無法判斷9.變量,之間有如下對(duì)應(yīng)數(shù)據(jù):3456713111087已知變量與呈線性相關(guān)關(guān)系,且回歸方程為,則的值是()A.2.3 B.2.5C.17.1 D.17.310.已知函數(shù),則()A.0 B.1C.2 D.11.下列命題中,真命題的個(gè)數(shù)為()(1)是為雙曲線的充要條件;(2)若,則;(3)若,,則;(4)橢圓上的點(diǎn)距點(diǎn)最近的距離為;A.個(gè) B.個(gè)C.個(gè) D.個(gè)12.設(shè)實(shí)數(shù),滿足,則的最小值為()A.5 B.6C.7 D.8二、填空題:本題共4小題,每小題5分,共20分。13.若“x2-x-6>0”是“x>a”的必要不充分條件,則a的最小值為________.14.過點(diǎn)與直線平行的直線的方程是________.15.已知平面和兩條不同的直線,則下列判斷中正確的序號(hào)是___________.①若,則;②若,則;③若,則;④若,則;16.在中.若成公比為的等比數(shù)列,則____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面是邊長為2的正方形,,,且,為的中點(diǎn)(1)求平面與平面夾角的余弦值;(2)在線段上是否存在點(diǎn),使得點(diǎn)到平面的距離為?若存在,確定點(diǎn)的位置;若不存在,請(qǐng)說明理由18.(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)在其定義域上是增函數(shù),求實(shí)數(shù)的取值范圍.19.(12分)如圖,在四棱錐中,底面,底面是邊長為2的正方形,,F(xiàn),G分別是,的中點(diǎn)(1)求證:平面;(2)求平面與平面的夾角的大小20.(12分)已知橢圓的短軸長為2,左、右焦點(diǎn)分別為,,過且垂直于長軸的弦長為1(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若A,B為橢圓C上位于x軸同側(cè)的兩點(diǎn),且,共線,求四邊形的面積的最大值21.(12分)如圖,在三棱錐中,側(cè)面PBC是邊長為2的等邊三角形,M,N分別為AB,AP的中點(diǎn).過MN的平面與側(cè)面PBC交于EF(1)求證:;(2)若平面平面ABC,,求直線PB與平面PAC所成角的正弦值22.(10分)已知,,分別是銳角內(nèi)角,,對(duì)邊,,.(1)求的值;(2)若的面積為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】利用空間向量加法運(yùn)算,減法運(yùn)算,數(shù)乘運(yùn)算即可得到答案.【詳解】如圖故選:A2、B【解析】由題意求出函數(shù)的導(dǎo)函數(shù),然后令即可求解【詳解】因?yàn)?,所以,則,故選:3、C【解析】求解不等式,利用幾何概型的概率計(jì)算公式即可容易求得.【詳解】求解不等式可得:,由幾何概型的概率計(jì)算公式可得:在區(qū)間內(nèi)隨機(jī)取一個(gè)數(shù)則該數(shù)滿足的概率為.故選:.4、B【解析】根據(jù)給定的不等式構(gòu)造函數(shù),再探討函數(shù)的性質(zhì),借助性質(zhì)解不等式作答.【詳解】依題意,令,因是R上的奇函數(shù),則,即是R上的奇函數(shù),當(dāng)時(shí),,則有在單調(diào)遞增,又函數(shù)在R上連續(xù),因此,函數(shù)在R上單調(diào)遞增,不等式,于是得,解得,所以原不等式的解集是.故選:B5、C【解析】分別求出n=k時(shí)左端的表達(dá)式,和n=k+1時(shí)左端的表達(dá)式,比較可得“n從k到k+1”左端需增乘的代數(shù)式【詳解】當(dāng)n=k時(shí),左端=(k+1)(k+2)(k+3)…(2k),當(dāng)n=k+1時(shí),左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左邊需增乘的代數(shù)式是故選:C【點(diǎn)睛】本題考查用數(shù)學(xué)歸納法證明等式,分別求出n=k時(shí)左端的表達(dá)式和n=k+1時(shí)左端的表達(dá)式,是解題的關(guān)鍵6、A【解析】設(shè),,則、,由點(diǎn)在圓上可得,再由向量垂直的坐標(biāo)表示可得,進(jìn)而可得M的軌跡為圓,即可求的最大值.【詳解】設(shè),中點(diǎn),則,,又,,則,所以,又,則,而,,所以,即,綜上,,整理得,即為M的軌跡方程,所以在圓心為,半徑為的圓上,則.故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:由點(diǎn)圓位置、中點(diǎn)坐標(biāo)公式及向量垂直的坐標(biāo)表示得到關(guān)于的軌跡方程.7、A【解析】由題意,,結(jié)合,求解即可【詳解】∵橢圓的長軸長,短軸長,焦距長成等比數(shù)列∴∴又∵∴∴,即∴e=又在橢圓e>0∴e=故選:A8、A【解析】首先構(gòu)造函數(shù),再利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,即可判斷選項(xiàng).【詳解】設(shè),,所以函數(shù)在單調(diào)遞增,即,所以,那么,即.故選:A9、D【解析】將樣本中心點(diǎn)代入回歸方程后求解【詳解】,,將樣本中心點(diǎn)代入回歸方程,得故選:D10、C【解析】對(duì)函數(shù)f(x)求導(dǎo)即可求得結(jié)果.【詳解】函數(shù),則,,故選C【點(diǎn)睛】本題考查正弦函數(shù)的導(dǎo)數(shù)的應(yīng)用,屬于簡(jiǎn)單題.11、A【解析】利用方程表示雙曲線求出的取值范圍,利用集合的包含關(guān)系可判斷(1)的正誤;直接判斷命題的正誤,可判斷(2)的正誤;利用空間向量垂直的坐標(biāo)表示可判斷(3)的正誤;利用橢圓的有界性可判斷(4)的正誤.【詳解】對(duì)于(1),若曲線為雙曲線,則,即,解得或,因?yàn)榛颍虼?,是為雙曲線的充分不必要條件,(1)錯(cuò);對(duì)于(2),若,則或,(2)錯(cuò);對(duì)于(3),,則,(3)對(duì);對(duì)于(4),設(shè)點(diǎn)為橢圓上一點(diǎn),則且,則點(diǎn)到點(diǎn)的距離為,(4)錯(cuò).故選:A.12、A【解析】作出不等式組的可行域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合的思想求解即可.【詳解】畫出約束條件的平面區(qū)域,如下圖所示:目標(biāo)函數(shù)可以化為,函數(shù)可以看成由函數(shù)平移得到,當(dāng)直線經(jīng)過點(diǎn)時(shí),直線的截距最小,則,故選:二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】解出不等式x2-x-6>0,由“x2-x-6>0”是“x>a”的必要不充分條件,求出a的最小值.【詳解】由x2-x-6>0,解得x<-2或x>3.因?yàn)椤皒2-x-6>0”是“x>a”的必要不充分條件,所以{x|x>a}是{x|x<-2或x>3}的真子集,即a≥3,故答案為:3.【點(diǎn)睛】本題考查充分條件和必要條件的應(yīng)用,考查一元二次不等式的解法,屬于基礎(chǔ)題.14、【解析】根據(jù)給定條件設(shè)出所求直線方程,利用待定系數(shù)法求解即得.【詳解】設(shè)與直線平行的直線的方程為,而點(diǎn)在直線上,于是得,解得,所以所求的直線的方程為.故答案為:15、②④【解析】根據(jù)直線與直線,直線與平面的位置關(guān)系依次判斷每個(gè)選項(xiàng)得到答案.詳解】若,則或,異面,或,相交,①錯(cuò)誤;若,則,②正確;若,則或或與相交,③錯(cuò)誤;若,則,④正確;故答案為:②④.16、【解析】由條件可得,即,由余弦定理可得答案.【詳解】由成公比為的等比數(shù)列,即由正弦定理可知所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,點(diǎn)為線段的靠近點(diǎn)的三等分點(diǎn)【解析】(1)根據(jù)題意證得平面,進(jìn)而證得平面,得到平面,以點(diǎn)為坐標(biāo)原點(diǎn),,,所在直線分別為軸、軸和軸建立空間直角坐標(biāo)系,求得平面和平面的法向量,結(jié)合向量的夾角公式,即可求解;(2)設(shè)點(diǎn),求得平面的法向量為,結(jié)合向量的距離公式列出方程,求得的值,即可得到答案.【小問1詳解】解:因?yàn)樗倪呅螢檎叫危瑒t,,由,,,所以平面,因?yàn)槠矫?,所以,又由,,,所以平面,又因?yàn)槠矫?,所以,因?yàn)榍移矫?,所以平面,由平面,且,不妨以點(diǎn)為坐標(biāo)原點(diǎn),,,所在直線分別為軸、軸和軸建立空間直角坐標(biāo)系,如圖所示,則,,,,可得,,,設(shè)平面的法向量為,則,取,可得,所以,易得平面的法向量為,則,由平面與平面夾角為銳角,所以平面與平面夾角的余弦值【小問2詳解】解:設(shè)點(diǎn),可得,,設(shè)平面的法向量為,則,取,可得,所以,所以點(diǎn)到平面的距離為,解得,即或因?yàn)?,所以故?dāng)點(diǎn)為線段的靠近點(diǎn)的三等分點(diǎn)時(shí),點(diǎn)到平面的距離為.18、(1)在、上遞增,在上遞減;(2).【解析】【小問1詳解】由題設(shè),且定義域?yàn)?,則,當(dāng)或時(shí),;當(dāng)時(shí),.所以在、上遞增,在上遞減.【小問2詳解】由題設(shè),在上恒成立,所以在上恒成立,當(dāng)時(shí),滿足題設(shè);當(dāng)時(shí),,可得.綜上,.19、(1)證明見解析(2)【解析】(1)取中點(diǎn)連接,連接,證得四邊形為平行四邊形,,再證面,即可得到證明結(jié)果;(2)建立空間坐標(biāo)系,求面和面的法向量,即可得到兩個(gè)面的二面角的余弦值,進(jìn)而得到二面角大小.【小問1詳解】如上圖,取中點(diǎn)連接,連接,均為線段中點(diǎn),且,又G是的中點(diǎn),且且四邊形為平行四邊形為等腰直角三角形,為斜邊中點(diǎn),面,面面又面.【小問2詳解】建立如圖坐標(biāo)系,設(shè)面的法向量為設(shè)面的法向量為兩個(gè)法向量的夾角余弦值為:,由圖知兩個(gè)面的二面角為鈍角,故夾角為.20、(1)(2)2【解析】(1)根據(jù)已知條件求得,由此求得橢圓的標(biāo)準(zhǔn)方程.(2)延長,交橢圓C于點(diǎn).設(shè)出直線的方程并與橢圓方程聯(lián)立,化簡(jiǎn)寫出根與系數(shù)關(guān)系,根據(jù)對(duì)稱性求得四邊形的面積的表達(dá)式,利用換元法,結(jié)合基本不等式求得四邊形的面積的最大值.【小問1詳解】由題可知,即,因?yàn)檫^且垂直于長軸的弦長為1,所以,所以所以橢圓C的標(biāo)準(zhǔn)方程為【小問2詳解】因?yàn)?,共線,所以延長,交橢圓C于點(diǎn).設(shè),由(1)可知,可設(shè)直線的方程為聯(lián)立,消去x可得,所以,由對(duì)稱性可知設(shè)與間的距離為d,則四邊形的面積令,則.因?yàn)椋?dāng)且僅當(dāng)時(shí)取等號(hào),所以,即四邊形的面積的最大值為2【點(diǎn)睛】在橢圓、雙曲線、拋物線中,求三角形、四邊形面積的最值問題,求解策略是:首先結(jié)合弦長公式、點(diǎn)到直線距離公式等求得面積的表達(dá)式;然后利用基本不等式、二次函數(shù)的性質(zhì)等知識(shí)來求得最值.21、(1)證明見解析(2)【解析】(1)由題意先證明平面PBC,然后由線面平行的性質(zhì)定理可證明.(2)由平面平面ABC,取BC中點(diǎn)O,則平面ABC,可得,由條件可得,以O(shè)坐標(biāo)原點(diǎn),分別以O(shè)B,AO,OP為x,y,z軸建立空間直角坐標(biāo)系,利用向量法求解即可.【小問1詳解】因?yàn)镸,N分別為AB,AP的中點(diǎn),所以,又平面PBC,所以平面PBC,因?yàn)槠矫嫫矫?,所以【小?詳解】因?yàn)槠矫嫫矫鍭BC,取BC中點(diǎn)O,連接PO,AO,因?yàn)槭堑冗?/p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 緯編工崗前跨領(lǐng)域知識(shí)考核試卷含答案
- 栓皮制品工崗前技術(shù)實(shí)操考核試卷含答案
- 珍珠巖焙燒工操作規(guī)程水平考核試卷含答案
- 紋版復(fù)制工達(dá)標(biāo)水平考核試卷含答案
- 信息通信網(wǎng)絡(luò)測(cè)量員安全管理模擬考核試卷含答案
- 煤層氣排采工9S考核試卷含答案
- 電線電纜拉制工安全防護(hù)知識(shí)考核試卷含答案
- 酒精發(fā)酵工操作測(cè)試考核試卷含答案
- 汽車飾件制造工安全宣教水平考核試卷含答案
- 2024年沽源縣事業(yè)單位聯(lián)考招聘考試真題匯編附答案
- 2025購房合同(一次性付款)
- 云南省茶葉出口競(jìng)爭(zhēng)力分析及提升對(duì)策研究
- 銀行情緒與壓力管理課件
- 甲狀腺危象護(hù)理查房要點(diǎn)
- 《無人機(jī)飛行安全及法律法規(guī)》第3版全套教學(xué)課件
- 2025內(nèi)蒙古電力集團(tuán)招聘筆試考試筆試歷年參考題庫附帶答案詳解
- 交通警察道路執(zhí)勤執(zhí)法培訓(xùn)課件
- 十五五學(xué)校五年發(fā)展規(guī)劃(2026-2030)
- 洗浴員工協(xié)議書
- GB/T 17642-2025土工合成材料非織造布復(fù)合土工膜
- 清欠歷史舊賬協(xié)議書
評(píng)論
0/150
提交評(píng)論