南平市重點中學2026屆高一上數(shù)學期末達標檢測模擬試題含解析_第1頁
南平市重點中學2026屆高一上數(shù)學期末達標檢測模擬試題含解析_第2頁
南平市重點中學2026屆高一上數(shù)學期末達標檢測模擬試題含解析_第3頁
南平市重點中學2026屆高一上數(shù)學期末達標檢測模擬試題含解析_第4頁
南平市重點中學2026屆高一上數(shù)學期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

南平市重點中學2026屆高一上數(shù)學期末達標檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知全集,集合,那么()A. B.C. D.2.角是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角3.已知水平放置的四邊形按斜二測畫法得到如圖所示的直觀圖,其中,,,,則原四邊形的面積為()A. B.C. D.4.已知向量,,,則A. B.C. D.5.設,則a,b,c大小關系為()A. B.C. D.6.O為正方體底面ABCD的中心,則直線與的夾角為A. B.C. D.7.函數(shù)的最大值與最小值分別為()A.3,-1 B.3,-2C.2,-1 D.2,-28.若函數(shù),則()A. B.C. D.9.若函數(shù)滿足,且,,則A.1 B.3C. D.10.已知四面體ABCD中,E,F(xiàn)分別是AC,BD的中點,若AB=6,CD=8,EF=5,則AB與CD所成角的度數(shù)為A.30° B.45°C.60° D.90°二、填空題:本大題共6小題,每小題5分,共30分。11.給出以下四個結(jié)論:①若函數(shù)的定義域為,則函數(shù)的定義域是;②函數(shù)(其中,且)圖象過定點;③當時,冪函數(shù)的圖象是一條直線;④若,則的取值范圍是;⑤若函數(shù)在區(qū)間上單調(diào)遞減,則的取值范圍是.其中所有正確結(jié)論的序號是___________.12.經(jīng)過點,且在軸上的截距等于在軸上的截距的2倍的直線的方程是__________13.已知,則______________14.如圖,在四面體ABCD中,AB⊥平面BCD,△BCD是邊長為6的等邊三角形.若AB=4,則四面體ABCD外接球的表面積為________15.已知圓心角為的扇形的面積為,則該扇形的半徑為____.16.已知函數(shù),設,,若成立,則實數(shù)的最大值是_______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在推導很多三角恒等變換公式時,我們可以利用平面向量的有關知識來研究,在一定程度上可以簡化推理過程.如我們就可以利用平面向量來推導兩角差的余弦公式:具體過程如下:如圖,在平面直角坐標系內(nèi)作單位圓,以為始邊作角.它們的終邊與單位圓的交點分別為則,由向量數(shù)量積的坐標表示,有設的夾角為,則,另一方面,由圖(1)可知,;由圖(2)可知,于是所以,也有;所以,對于任意角有:此公式給出了任意角的正弦、余弦值與其差角的余弦值之間的關系,稱為差角的余弦公式,簡記作.有了公式以后,我們只要知道的值,就可以求得的值了閱讀以上材料,利用圖(3)單位圓及相關數(shù)據(jù)(圖中是的中點),采取類似方法(用其他方法解答正確同等給分)解決下列問題:(1)判斷是否正確?(不需要證明)(2)證明:18.已知函數(shù).(Ⅰ)對任意的實數(shù),恒有成立,求實數(shù)的取值范圍;(Ⅱ)在(Ⅰ)的條件下,當實數(shù)取最小值時,討論函數(shù)在時的零點個數(shù).19.已知集合A={x|x=m2-n2,m∈Z,n∈Z}.求證:(1)3∈A;(2)偶數(shù)4k-2(k∈Z)不屬于A20.已知函數(shù),.(1)當時,求函數(shù)的值域;(2)如果對任意的,不等式恒成立,求實數(shù)的取值范圍;(3)是否存在實數(shù),使得函數(shù)最大值為0,若存在,求出的值,若不存在,說明理由.21.已知,函數(shù).(1)當時,證明是奇函數(shù);(2)當時,求函數(shù)的單調(diào)區(qū)間;(3)當時,求函數(shù)在上的最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】應用集合的補運算求即可.【詳解】∵,,∴.故選:C2、B【解析】找到與終邊相等的角,進而判斷出是第幾象限角.【詳解】因為,所以角和角是終邊相同的角,因為角是第二象限角,所以角是第二象限角.故選:B.3、B【解析】根據(jù)直觀圖畫出原圖,可得原圖形為直角梯形,計算該直角梯形的面積即可.【詳解】過點作,垂足為則由已知可得四邊形為矩形,為等腰直角三角形,根據(jù)直觀圖畫出原圖如下:可得原圖形為直角梯形,,且,可得原四邊形的面積為故選:B.4、D【解析】A項:利用向量的坐標運算以及向量共線的等價條件即可判斷.B項:利用向量模的公式即可判斷.C項:利用向量的坐標運算求出數(shù)量積即可比較大小.D項:利用向量加法的坐標運算即可判斷.【詳解】A選項:因為,,所以與不共線.B選項:,,顯然,不正確.C選項:因為,所以,不正確;D選項:因為,所以,正確;答案為D.【點睛】主要考查向量加、減、數(shù)乘、數(shù)量積的坐標運算,還有向量模的公式以及向量共線的等價條件的運用.屬于基礎題.5、C【解析】利用有理指數(shù)冪和冪函數(shù)的單調(diào)性分別求得,,的范圍即可得答案【詳解】,,,又在上單調(diào)遞增,,,故選:C6、D【解析】推導出A1C1⊥BD,A1C1⊥DD1,從而D1O?平面BDD1,由此得到A1C1⊥D1O【詳解】∵O為正方體ABCD﹣A1B1C1D1底面ABCD的中心,∴A1C1⊥BD,A1C1⊥DD1,∵BD∩DD1=D,∴A1C1⊥平面BDD1,∵D1O?平面BDD1,∴A1C1⊥D1O故答案為:D【點睛】本題考查與已知直線垂直的直線的判斷,是中檔題,做題時要認真審題,注意線面垂直的性質(zhì)的合理運用7、D【解析】分析:將化為,令,可得關于t的二次函數(shù),根據(jù)t的取值范圍,求二次函數(shù)的最值即可.詳解:利用同角三角函數(shù)關系化簡,設,則,根據(jù)二次函數(shù)性質(zhì)當時,y取最大值2,當時,y取最小值.故選D.點睛:本題考查三角函數(shù)有關的最值問題,此類問題一般分為兩類,一種是解析式化為的形式,用換元法求解;另一種是將解析式化為的形式,根據(jù)角的范圍求解.8、C【解析】應用換元法求函數(shù)解析式即可.【詳解】令,則,所以,即.故選:C9、B【解析】因為函數(shù)滿足,所以,結(jié)合,可得,故選B.10、D【解析】取BC的中點P,連接PE,PF,則∠FPE(或補角)是AB與CD所成的角,利用勾股定理可求該角為直角.【詳解】如圖,取BC的中點P,連接PE,PF,則PF//CD,∠FPE(或補角)是AB與CD所成的角,∵AB=6,CD=8,∴PF=4,PE=3,而EF=5,所以PF2+P故選:D.【點睛】本題考查異面直線所成的角,此類問題一般需要通過平移構(gòu)建平面角,再利用解三角形的方法求解.二、填空題:本大題共6小題,每小題5分,共30分。11、①④⑤【解析】根據(jù)抽象函數(shù)的定義域,對數(shù)函數(shù)的性質(zhì)、冪函數(shù)的定義、對數(shù)不等式的求解方法,以及復合函數(shù)單調(diào)性的討論,對每一項進行逐一分析,即可判斷和選擇.【詳解】對①:因為,,所以的定義域為,令,故,即的定義域為,故①正確;對②:當,,圖象恒過定點,故②錯誤;對③:若,則的圖象是兩條射線,故③錯誤;對④:原不等式等價于,故(無解)或,解得,故④正確;對⑤:實數(shù)應滿足,解得,故⑤正確;綜上所述:正確結(jié)論的序號為①④⑤.【點睛】(1)抽象函數(shù)的定義域是一個難點,一般地,如果已知的定義域為,的定義域為,那么的定義域為;如果已知的定義域為,那么的定義域可取為.(2)形如的復合函數(shù),如果已知其在某區(qū)間上是單調(diào)函數(shù),我們不僅要考慮在給定區(qū)間上單調(diào)性,還要考慮到其在給定區(qū)間上總有成立.12、或【解析】設所求直線方程為,將點代入上式可得或.考點:直線方程13、100【解析】分析得出得解.【詳解】∴故答案為:100【點睛】由函數(shù)解析式得到是定值是解題關鍵.14、【解析】由題設知,四面體ABCD的外接球也是與其同底等高的三棱柱的外接球,球心為上下底面中心連線EF的中點,所以,所以球的半徑所以,外接球的表面積,所以答案應填:考點:1、空間幾何體的結(jié)構(gòu)特征;2、空間幾何體的表面積15、4【解析】由扇形的面積公式列方程即可求解.【詳解】扇形的面積,即,解得:.故答案為:.16、【解析】設不等式的解集為,從而得出韋達定理,由可得,要使,即不等式的解集為,則可得,以及是方程的兩個根,再得出其韋達定理,比較韋達定理可得出,從而求出與的關系,代入,得出答案.【詳解】,則由題意設集合,即不等式的解集為所以是方程的兩個不等實數(shù)根則,則由可得,由,所以不等式的解集為所以是方程,即的兩個不等實數(shù)根,所以故,,則,則,則由,即,即,解得綜上可得,所以的最大值為故答案:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)正確;(2)證明見解析【解析】(1)根據(jù)單位向量的定義可得出結(jié)論;(2)根據(jù)向量相等及坐標運算,化簡計算即可證明結(jié)論.【詳解】(1)因為對于非零向量是方向上的單位向量,又且與共線,所以正確;(2)因為為的中點,則,從而在中,,又又M是AB的中點,所以,化簡得,結(jié)論得證.18、(Ⅰ);(Ⅱ)見解析.【解析】(Ⅰ)由可知,區(qū)間是不等式解集的子集,由此可得出實數(shù)的不等式,解出即可;(Ⅱ)由題意可知,,則,令,可得出,令,對實數(shù)的取值范圍進行分類討論,先討論方程的根的個數(shù)及根的范圍,進而得出方程的根個數(shù),由此可得出結(jié)論.【詳解】(Ⅰ),,對任意的實數(shù),恒有成立,則區(qū)間是不等式解集的子集,,解得,因此,實數(shù)的取值范圍是;(Ⅱ),由題意可知,,,令,得,令,則,作出函數(shù)和函數(shù)在時的圖象如下圖所示:作出函數(shù)在時的圖象如下圖所示:①當或時,即當或時,方程無實根,此時,函數(shù)無零點;②當時,即當時,方程根為,而方程在區(qū)間上有兩個實根,此時,函數(shù)有兩個零點;③當時,即當時,方程有兩根、,且,,方程在區(qū)間上有兩個實根,方程在區(qū)間上有兩個實根,此時,函數(shù)有四個零點;④當時,即當時,方程有兩根分別為、,方程在區(qū)間上只有一個實根,方程在區(qū)間上有兩個實根,此時,函數(shù)有三個零點;⑤當時,即當時,方程只有一個實根,且,方程在區(qū)間上有兩個實根,此時,函數(shù)有兩個零點;⑥當時,即當時,方程只有一個實根,方程在區(qū)間上只有一個實根,此時,函數(shù)只有一個零點.綜上所述,當或時,函數(shù)無零點;當時,函數(shù)只有一個零點;當或時,函數(shù)有兩個零點;當時,函數(shù)有三個零點;當時,函數(shù)有四個零點.【點睛】本題考查利用二次不等式求參數(shù),同時也考查了復合型二次函數(shù)的零點個數(shù)的分類討論,解題時要將函數(shù)分解為內(nèi)層函數(shù)和外層函數(shù)來分析,考查數(shù)形結(jié)合思想與分類討論思想的應用,屬于難題.19、(1)見解析;(2)見解析.【解析】(1)由3=22-12即可證得;(2)設4k-2∈A,則存在m,n∈Z,使4k-2=m2-n2=(m+n)(m-n)成立,分當m,n同奇或同偶時和當m,n一奇,一偶時兩種情況進行否定即可.試題解析:(1)∵3=22-12,3∈A;(2)設4k-2∈A,則存在m,n∈Z,使4k-2=m2-n2=(m+n)(m-n)成立,1、當m,n同奇或同偶時,m-n,m+n均為偶數(shù),∴(m-n)(m+n)為4的倍數(shù),與4k-2不是4的倍數(shù)矛盾2、當m,n一奇,一偶時,m-n,m+n均為奇數(shù),∴(m-n)(m+n)為奇數(shù),與4k-2是偶數(shù)矛盾綜上4k-2不屬于A20、(1)[0,2];(2)(-∞,);(3)答案見解析.【解析】(1)由h(x)=-2(log3x-1)2+2,根據(jù)log3x∈[0,2],即可得值域;(2)由,令t=log3x,因為x∈[1,9],所以t=log3x∈[0,2],得(3-4t)(3-t)>k對一切t∈[0,2]恒成立,利用二次函數(shù)求函數(shù)的最小值即可;(3)由,假設最大值為0,因為,則有,求解即可.試題解析:(1)h(x)=(4-2log3x)·log3x=-2(log3x-1)2+2,因為x∈[1,9],所以log3x∈[0,2],故函數(shù)h(x)的值域為[0,2].(2)由,得(3-4log3x)(3-log3x)>k,令t=log3x,因為x∈[1,9],所以t=log3x∈[0,2],所以(3-4t)(3-t)>k對一切t∈[0,2]恒成立,令,其對稱軸為,所以當時,的最小值為,綜上,實數(shù)k的取值范圍為(-∞,)..(3)假設存在實數(shù),使得函數(shù)的最大值為0,由.因為,則有,解得,所以不存在實數(shù),使得函數(shù)的最大值為0.點睛:函數(shù)問題經(jīng)常會遇見恒成立的問題:(1)根據(jù)參變分離,轉(zhuǎn)化為不含參數(shù)的函數(shù)的最值問題;(2)若就可討論參數(shù)不同取值下的函數(shù)的單調(diào)性和極值以及最值,最終轉(zhuǎn)化為,若恒成立;(3)若恒成立,可轉(zhuǎn)化為(需在同一處取得最值).21、(1)見解析(2)增區(qū)間為,,減區(qū)間為(3)當時,;當時,【解析】(1)時,,定義域為,關于原點對稱,而,故是奇函數(shù).(2)時,,不同范圍

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論