2026屆浙江省溫州市溫州中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2026屆浙江省溫州市溫州中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2026屆浙江省溫州市溫州中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2026屆浙江省溫州市溫州中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2026屆浙江省溫州市溫州中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆浙江省溫州市溫州中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線l,m,平面α,β,,,則是的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件2.若向量,,則()A. B.C. D.3.在空間直角坐標系中,點關(guān)于軸對稱的點的坐標為()A. B.C. D.4.已知奇函數(shù)是定義在R上的可導(dǎo)函數(shù),的導(dǎo)函數(shù)為,當(dāng)時,有,則不等式的解集為()A. B.C. D.5.用反證法證明“若a,b∈R,,則a,b不全為0”時,假設(shè)正確的是()A.a,b中只有一個為0 B.a,b至少一個不為0C.a,b至少有一個為0 D.a,b全為06.已知函數(shù),若對任意兩個不等的正數(shù),,都有恒成立,則a的取值范圍為()A. B.C. D.7.某社區(qū)醫(yī)院為了了解社區(qū)老人與兒童每月患感冒的人數(shù)y(人)與月平均氣溫x(℃)之間的關(guān)系,隨機統(tǒng)計了某4個月的患?。ǜ忻埃┤藬?shù)與當(dāng)月平均氣溫,其數(shù)據(jù)如下表:月平均氣溫x(℃)171382月患病y(人)24334055由表中數(shù)據(jù)算出線性回歸方程中的,氣象部門預(yù)測下個月的平均氣溫約為9℃,據(jù)此估計該社區(qū)下個月老年人與兒童患病人數(shù)約為()A.38 B.40C.46 D.588.已知函數(shù),則()A. B.0C. D.19.已知等差數(shù)列的前n項和為,且,,若(,且),則i的取值集合是()A. B.C. D.10.函數(shù)圖象的一個對稱中心為()A. B.C. D.11.《萊茵德紙草書》是世界上最古老的數(shù)學(xué)著作之一.書中有這樣一道題目:把個面包分給個人,使每個人所得成等差數(shù)列,且使較大的三份之和的是較小的兩份之和,則最小的一份為()A. B.C. D.12.設(shè)函數(shù),,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.我國民間剪紙藝術(shù)在剪紙時經(jīng)常會沿紙的某條對稱軸把紙對折.現(xiàn)有一張半徑為的圓形紙,對折次可以得到兩個規(guī)格相同的圖形,將其中之一進行第次對折后,就會得到三個圖形,其中有兩個規(guī)格相同,取規(guī)格相同的兩個之一進行第次對折后,就會得到四個圖形,其中依然有兩個規(guī)格相同,以此類推,每次對折后都會有兩個圖形規(guī)格相同.如果把次對折后得到的不同規(guī)格的圖形面積和用表示,由題意知,,則________;如果對折次,則________.14.已知橢圓和雙曲線有相同的焦點和,設(shè)橢圓和雙曲線的離心率分別為,,為兩曲線的一個公共點,且(為坐標原點).若,則的取值范圍是______15.已知圓:,圓:,則圓與圓的位置關(guān)系是______16.雙曲線的左焦點到直線的距離為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,正方體的棱長為2,點為的中點.(1)求直線與平面所成角的正弦值;(2)求點到平面的距離.18.(12分)已知直線,直線經(jīng)過點且與直線平行,設(shè)直線分別與x軸,y軸交于A,B兩點.(1)求點A和B的坐標;(2)若圓C經(jīng)過點A和B,且圓心C在直線上,求圓C的方程.19.(12分)如圖所示,四棱錐的底面為直角梯形,,,,,底面,為的中點(1)求證:平面平面;(2)求點到平面的距離20.(12分)已知函數(shù).(1)若在上單調(diào)遞增,求的取值范圍;(2)若在上存在極值點,證明:.21.(12分)已知橢圓左,右頂點分別是,,且,是橢圓上異于,的不同的兩點(1)若,證明:直線必過坐標原點;(2)設(shè)點是以為直徑的圓和以為直徑的圓的另一個交點,記線段的中點為,若,求動點的軌跡方程22.(10分)已知函數(shù)(1)若在點處的切線與軸平行,求的值;(2)當(dāng)時,求證:;(3)若函數(shù)有兩個零點,求的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由題意可知,已知,,則可以推出,反之不成立.【詳解】已知,,則可以推出,已知,,則不可以推出.故是的充分不必要條件.故選:A.2、D【解析】由向量數(shù)量積的坐標運算求得數(shù)量積,模,結(jié)合向量的共線定義判斷【詳解】由已知,,,與不垂直,若,則,,但是,,因此與不共線故選:D3、B【解析】結(jié)合已知條件,利用對稱的概念即可求解.【詳解】不妨設(shè)點關(guān)于軸對稱的點的坐標為,則線段垂直于軸且的中點在軸,從而點關(guān)于軸對稱的點的坐標為.故選:B.4、B【解析】根據(jù)給定的不等式構(gòu)造函數(shù),再探討函數(shù)的性質(zhì),借助性質(zhì)解不等式作答.【詳解】依題意,令,因是R上的奇函數(shù),則,即是R上的奇函數(shù),當(dāng)時,,則有在單調(diào)遞增,又函數(shù)在R上連續(xù),因此,函數(shù)在R上單調(diào)遞增,不等式,于是得,解得,所以原不等式的解集是.故選:B5、D【解析】把要證的結(jié)論否定之后,即得所求的反設(shè)【詳解】由于“a,b不全為0”的否定為:“a,b全為0”,所以假設(shè)正確的是a,b全為0.故選:D6、A【解析】將已知條件轉(zhuǎn)化為時恒成立,利用參數(shù)分離的方法求出a的取值范圍【詳解】對任意都有恒成立,則時,,當(dāng)時恒成立,

,當(dāng)時恒成立,,故選:A7、B【解析】由表格數(shù)據(jù)求樣本中心,根據(jù)線性回歸方程過樣本中心點,將點代入方程求參數(shù),寫出回歸方程,進而估計下個月老年人與兒童患病人數(shù).【詳解】由表格得為,由回歸方程中的,∴,解得,即,當(dāng)時,.故選:B.8、B【解析】先求導(dǎo),再代入求值.詳解】,所以.故選:B9、C【解析】首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設(shè)公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.【點睛】本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.10、D【解析】要求函數(shù)圖象的一個對稱中心的坐標,關(guān)鍵是求函數(shù)時的的值;令,根據(jù)余弦函數(shù)圖象性質(zhì)可得,此時可求出,然后對進行取值,進而結(jié)合選項即可得到答案.【詳解】解:令,則解得,即,圖象的對稱中心為,令,即可得到圖象的一個對稱中心為故選:D【點睛】本題考查三角函數(shù)的對稱中心,正弦函數(shù)的對稱中心為,余弦函數(shù)的對稱中心為.11、A【解析】設(shè)5人分到的面包數(shù)量從小到大記為,設(shè)公差為,可得,,求出,根據(jù)等差數(shù)列的通項公式,得到關(guān)于關(guān)系式,即可求出結(jié)論.【詳解】設(shè)5人分到的面包數(shù)量從小到大記為,設(shè)公差為,依題意可得,,,,解得,.故選:A.【點睛】本題以數(shù)學(xué)文化為背景,考查等差數(shù)列的前項和、通項公式基本量的計算,等差數(shù)列的性質(zhì)應(yīng)用是解題的關(guān)鍵,屬于中檔題.12、A【解析】根據(jù)導(dǎo)數(shù)得出在的單調(diào)性,進而由單調(diào)性得出大小關(guān)系.【詳解】因為,所以在上單調(diào)遞增.因為,所以,而,所以.因為,且,所以.即.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】首先根據(jù)題意得到,再計算即可;根據(jù)題意得到,再利用分組求和法求和即可.【詳解】因為,,所以,所以..故答案為:;14、【解析】設(shè)出半焦距c,用表示出橢圓的長半軸長、雙曲線的實半軸長,由可得為直角三角形,由此建立關(guān)系即可計算作答,【詳解】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,它們的半焦距為c,于是得,,由橢圓及雙曲線的對稱性知,不妨令焦點和在x軸上,點P在y軸右側(cè),由橢圓及雙曲線定義得:,解得,,因,即,而O是線段的中點,因此有,則有,即,整理得:,從而有,即有,又,則有,即,解得,所以的取值范圍是.故答案為:【點睛】方法點睛:求解橢圓或雙曲線的離心率的三種方法:①定義法:通過已知條件列出方程組,求得值,根據(jù)離心率的定義求解離心率;②齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;③特殊值法:通過取特殊值或特殊位置,求出離心率.15、相交【解析】把兩個圓的方程化為標準方程,分別找出兩圓的圓心坐標和半徑,利用兩點間的距離公式求出兩圓心的距離,與半徑和與差的關(guān)系比較即可知兩圓位置關(guān)系.【詳解】化為,化為,則兩圓圓心分別為:,,半徑分別為:,圓心距為,,所以兩圓相交.故答案為:相交.16、【解析】根據(jù)雙曲線方程求得左焦點的坐標,利用點到直線的距離公式即可求得結(jié)果.【詳解】因為雙曲線的方程為,設(shè)其左焦點的坐標為,故可得,解得,故左焦點的坐標為,則其到直線的距離.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)建立空間直角坐標系,求出平面的一個法向量及,利用向量的夾角公式即可得解;(2)直接利用向量公式求解即可【小問1詳解】解:以點作坐標原點,建立如圖所示的空間直角坐標系,則,0,,,2,,,0,,,0,,設(shè)平面的一個法向量為,又,則,則可取,又,設(shè)直線與平面的夾角為,則,直線與平面的正弦值為;【小問2詳解】解:因為所以點到平面的距離為,點到平面的距離為18、(1),;(2).【解析】(1)由直線平行及所過的點,應(yīng)用點斜式寫出直線方程,進而求A、B坐標.(2)由(1)求出垂直平分線方程,并聯(lián)立直線求圓心坐標,即可求圓的半徑,進而寫出圓C的方程.【小問1詳解】由題設(shè),的斜率為,又直線與直線平行且過,所以直線為,即,令,則;令,則.所以,.【小問2詳解】由(1)可得:垂直平分線為,即,聯(lián)立,可得,即,故圓的半徑為,所以圓C的方程為.19、(1)證明見解析(2)【解析】(1)設(shè)與交點為,延長交的延長線于點,進而根據(jù)證明,再結(jié)合底面得,進而證明平面即可證明結(jié)論;(2)由得點到平面的距離等于點到平面的距離的,進而過作,垂足為,結(jié)合(1)得點到平面的距離等于,再在中根據(jù)等面積法求解即可.【小問1詳解】證明:設(shè)與交點為,延長交的延長線于點,因為四棱錐的底面為直角梯形,,所以,所以,因為為的中點,所以,因為所以,所以,所以,所以,又因為,所以,又因為,所以,所以,所以又因為底面,所以,因為,所以平面,因為平面,所以平面平面【小問2詳解】解:由于,所以,點到平面的距離等于點到平面的距離的,因為平面平面,平面平面故過作,垂足為,所以,平面,所以點到平面的距離等于在中,,所以,點到平面的距離等于.20、(1)(2)證明見解析【解析】(1)由題得,在,上為單調(diào)遞增的函數(shù),在,上恒成立,分類討論,再次利用導(dǎo)數(shù)研究函數(shù)的最值即可;(2)由(1)可知,在存在極值點,則且,求得,再兩次求導(dǎo)即可得結(jié)論.【小問1詳解】由題得,在,上為單調(diào)遞增的函數(shù),在,上恒成立,設(shè),當(dāng)時,由,得,在,上為增函數(shù),則,在,上恒成立,滿足命題,當(dāng)時,由,得,在上為減函數(shù),,時,,即,不滿足恒成立,不成立,綜上:的取值范圍為.小問2詳解】證明:由(1)可知,在存在極值點,則且即:要證只需證即證又由(1)可知在上為增函數(shù),且,成立.要證只需證即證:設(shè)則即在上增函數(shù)在為增函數(shù)成立.綜上,成立.21、(1)證明見解析;(2).【解析】(1)設(shè),首先證明,從而可得到,即得到;進而可得到四邊形為平行四邊形;再根據(jù)為的中點,即可證明直線必過坐標原點(2)設(shè)出直線的方程,與橢圓方程聯(lián)立,消元,寫韋達;根據(jù)條件可求出直線MN過定點,從而可得到過定點,進而可得到點在以為直徑的圓上運動,從而可求出動點的軌跡方程【小問1詳解】設(shè),則,即因為,,所以因為,所以,所以.同理可證.因為,,所以四邊形為平行四邊形,因為為的中點,所以直線必過坐標原點【小問2詳解】當(dāng)直線的斜率存在時,設(shè)直線的方程為,,聯(lián)立,整理得,則,,.因為,所以,因為,解得或.當(dāng)時,直線的方程為過點A,不滿足題意,所以舍去;所以直線的方程為,所以直線過定點.當(dāng)直線的斜率不存在時,因為,所以直線的方程為,經(jīng)驗證,符合題意.故直線過定點.因為為的中點,為的中點,所以過定點.因為垂直平分公共弦,所以點在以為直徑的圓上運動,該圓的半徑,圓心坐標為,故動點的軌跡方程為22、(1);(2)證明見解析;(3).【解析】(1)由可求得實數(shù)的值;(2)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,求得,即可證得結(jié)論成立;(3)分析可知在上存在唯一的極值點,且,可得出,構(gòu)造函數(shù),分析函數(shù)的單調(diào)性,求得的取值范圍,再構(gòu)造,分析函數(shù)的單調(diào)性,求出的范圍,即可得出的取值范圍.【小問1詳解】解:因為的定義域為,.由題意可得,解得.【小問2詳解】證明:當(dāng)時,,該函數(shù)的定義域為,,令,其中,則,故函數(shù)在上遞減,因為,,所以,存在,使得,則,且,當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,,函數(shù)單調(diào)遞減,所以,,所以,當(dāng)時,.【小問

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論