版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆廣西貴港市高二上數(shù)學期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,內(nèi)角所對的邊為,若,,,則()A. B.C. D.2.已知拋物線,則它的焦點坐標為()A. B.C. D.3.已知,,,若、、三個向量共面,則實數(shù)A3 B.5C.7 D.94.《張邱建算經(jīng)》記載:今有女子不善織布,逐日織布同數(shù)遞減,初日織五尺,末一日織一尺,計織三十日,問第11日到第20日這10日共織布()A.30尺 B.40尺C.6尺 D.60尺5.在中,已知點在線段上,點是的中點,,,,則的最小值為()A. B.4C. D.6.已知拋物線的焦點為,在拋物線上有一點,滿足,則的中點到軸的距離為()A. B.C. D.7.下列結(jié)論正確的是()A.若,則 B.若,則C.若,則 D.若,則8.傾斜角為45°,在軸上的截距是的直線方程為()A. B.C. D.9.已知,,,,則下列不等關(guān)系正確的是()A. B.C. D.10.等差數(shù)列中,若,,則等于()A. B.C. D.11.如圖,在三棱柱中,平面,,,分別是,中點,在線段上,則與平面的位置關(guān)系是()A.垂直 B.平行C.相交但不垂直 D.要依點的位置而定12.彬塔,又稱開元寺塔、彬縣塔,民間稱“雷峰塔”,位于陜西省彬縣城內(nèi)西南紫薇山下.某同學為測量彬塔高度,選取了與塔底在同一水平面內(nèi)的兩個測量基點與,現(xiàn)測得,,,在點測得塔頂?shù)难鼋菫?0°,則塔高()A.30m B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.定義在R上的函數(shù)滿足,其中為自然對數(shù)的底數(shù),,則滿足的a的取值范圍是__________.14.已知點,,其中,若線段的中點坐標為,則直線的方程為________15.設(shè)有下列命題:①當,時,不等式恒成立;②函數(shù)在上的最小值為2;③函數(shù)在上的最大值為;④若,,且,則的最小值為其中真命題為________________.(填寫所有真命題的序號)16.在長方體中,若,,則異面直線與所成角的大小為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱柱的底面為正方形,平面,,,點在上,且.(1)求證:;(2)求直線與平面所成角的正弦值;(3)求平面與平面夾角的余弦值.18.(12分)在等差數(shù)列中,,(1)求的通項公式;(2)設(shè),求數(shù)列的前項和19.(12分)如圖,在四棱柱中,底面,,,且,(1)求證:平面平面;(2)求二面角所成角的余弦值20.(12分)已知等差數(shù)列中,首項,公差,且數(shù)列的前項和為(1)求和;(2)設(shè),求數(shù)列的前項和21.(12分)已知點,圓(1)若過點的直線與圓相切,求直線的方程;(2)若直線與圓相交于A,兩點,弦的長為,求的值22.(10分)已知三角形內(nèi)角所對的邊分別為,且C為鈍角.(1)求cosA;(2)若,,求三角形的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用正弦定理角化邊得到,再利用余弦定理構(gòu)造方程求得結(jié)果.【詳解】,,由余弦定理得:,,.故選:B.2、D【解析】將拋物線方程化標準形式后得到焦準距,可得結(jié)果.【詳解】由得,所以,所以,所以拋物線的焦點坐標為.故選:D.【點睛】關(guān)鍵點點睛:將拋物線方程化為標準形式是解題關(guān)鍵.3、A【解析】由空間向量共面原理得存在實數(shù),,使得,由此能求出實數(shù)【詳解】解:,,,、、三個向量共面,存在實數(shù),,使得,即有:,解得,,實數(shù)故選:【點睛】本題考查空間向量共面原理的應用,屬于基礎(chǔ)題4、A【解析】由題意可知,每日的織布數(shù)構(gòu)成等差數(shù)列,由等差數(shù)列的求和公式得解.【詳解】由題女子織布數(shù)成等差數(shù)列,設(shè)第日織布為,有,所以,故選:A.5、C【解析】利用三點共線可得,由,利用基本不等式即可求解.【詳解】由點是的中點,則,又因為點在線段上,則,所以,當且僅當,時取等號,故選:C【點睛】本題考查了基本不等式求最值、平面向量共線的推論,考查了基本運算求解能力,屬于基礎(chǔ)題.6、A【解析】設(shè)點,利用拋物線的定義求出的值,可求得點的橫坐標,即可得解.【詳解】設(shè)點,易知拋物線的焦點為,由拋物線的定義可得,得,所以,點的橫坐標為,故點到軸的距離為.故選:A.7、C【解析】先舉例說明ABD不成立,再根據(jù)不等式性質(zhì)說明C成立.【詳解】當時,滿足,但不成立,所以A錯;當時,滿足,但不成立,所以B錯;當時,滿足,但不成立,所以D錯;因為所以,又,因此同向不等式相加得,即C對;故選:C【點睛】本題考查不等式性質(zhì),考查基本分析判斷能力,屬基礎(chǔ)題.8、B【解析】先由傾斜角為45°,可得其斜率為1,再由軸上的截距是,可求出直線方程【詳解】解:因為直線的傾斜角為45°,所以直線的斜率為,因為直線在軸上的截距是,所以所求的直線方程為,即,故選:B9、C【解析】不等式性質(zhì)相關(guān)的題型,可以通過舉反例的方式判斷正誤.【詳解】若、均為負數(shù),因為,則,故A錯.若、,則,故B錯.由不等式的性質(zhì)可知,因為,所以,故C對.若,因為,所以,故D錯.故選:C.10、C【解析】由等差數(shù)列下標和性質(zhì)可得.【詳解】因為,,所以.故選:C11、B【解析】構(gòu)造三角形,先證∥平面,同理得∥平面,再證平面∥平面即可.【詳解】連接,,.因為在直三棱柱中,M,N分別是,AB的中點,所以∥.因為平面內(nèi),平面,所以∥平面.同理可得AM∥平面.又因為,平面,平面,所以平面∥平面.又因為P點在線段上,所以∥平面.故選:B.12、D【解析】在△中有,再應用正弦定理求,再在△中,即可求塔高.【詳解】由題設(shè)知:,又,△中,可得,在△中,,則.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè),求出其導數(shù)結(jié)合條件得出在上單調(diào)遞減,將問題轉(zhuǎn)化為求解,由的單調(diào)性可得答案.【詳解】設(shè),則由,則所以在上單調(diào)遞減.又由,即,即,所以故答案為:14、【解析】根據(jù)中點坐標公式求出,再根據(jù)直線的兩點式方程即可得出答案.【詳解】解:由,,得線段的中點坐標為,所以,解得,所以直線的方程為,即.故答案為:.15、①③④【解析】①直接利用基本不等式判斷即可;②直接利用基本不等式以及等號成立的條件判斷即可;③分子、分母同除,利用基本不等式即可判斷;④設(shè),,利用指、對互化以及基本不等式即可判斷.【詳解】由于,,故恒成立,當且僅當時取等號,所以①正確;,當且僅當,即時取等號,由于,所以②不正確;因為,所以,當且僅當時取等號,而,即函數(shù)的最大值為,所以③正確;設(shè),,則,,,,,所以,當且僅當,時取等號,故的最小值為,所以④正確.故答案為:①③④【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.16、【解析】畫出長方體,再將異面直線與利用平行線轉(zhuǎn)移到一個三角形內(nèi)求解角度即可.【詳解】畫出長方體可得異面直線與所成角為與之間的夾角,連接.則因為,則,又,故,又,故為等腰直角三角形,故,即異面直線與所成角的大小為故答案為【點睛】本題主要考查立體幾何中異面直線的角度問題,一般的處理方法是將異面直線經(jīng)過平行線的轉(zhuǎn)換構(gòu)成三角形求角度,屬于基礎(chǔ)題型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)(3)【解析】(1)以為原點,所在的直線為軸的正方向建立空間直角坐標系,求出平面的一個法向量可得,即平面,再由線面垂直的性質(zhì)可得答案;(2)設(shè)直線與平面所成角的為,可得答案;(3)由二面角的向量求法可得答案.【小問1詳解】以為原點,所在的直線為軸的正方向建立空間直角坐標系,則,,,,,所以,,,設(shè)平面的一個法向量為,所以,即,令,則,所以,所以,所以平面,平面,所以.【小問2詳解】,所以,由(1)平面的一個法向量為,設(shè)直線與平面所成角的為,所以直線與平面所成角的正弦值.【小問3詳解】由已知為平面的一個法向量,且,由(1)平面的一個法向量為,所以,由圖可得平面與平面夾角的余弦值為.18、(1);(2).【解析】(1)根據(jù)等差數(shù)列的通項公式求解;(2)運用裂項相消法求數(shù)列的和.詳解】(1)∵,∴,即∴(2)由(1)可得,即.利用累加法得【點睛】本題考查等差數(shù)列的通項公式和裂項相消法求數(shù)列的和.19、(1)證明見解析;(2).【解析】(1)證出,,由線面垂直的判定定理可得平面,再根據(jù)面面垂直的判定定理即可證明.(2)分別以,,為,,軸,建立空間直角坐標系,求出平面的一個法向量以及平面的一個法向量,由即可求解.【詳解】(1)證明:因為,,所以,,因為,所以,所以,即因為底面,所以底面,所以因為,所以平面,又平面,所以平面平面(2)解:如圖,分別以,,為,,軸,建立空間直角坐標系,則,,,,所以,,,設(shè)平面的法向量為,則令,得設(shè)平面的法向量為,則令,得,所以,由圖知二面角為銳角,所以二面角所成角的余弦值為【點睛】思路點睛:解決二面角相關(guān)問題通常用向量法,具體步驟為:(1)建坐標系,建立坐標系的原則是盡可能的使得已知點在坐標軸上或在坐標平面內(nèi);(2)根據(jù)題意寫出點的坐標以及向量的坐標,注意坐標不能出錯.(3)利用數(shù)量積驗證垂直或求平面的法向量.(4)利用法向量求距離、線面角或二面角.20、(1),;(2).【解析】(1)根據(jù)題意,結(jié)合等差數(shù)列的通項公式與求和公式,即可求解;(2)根據(jù)題意,求出,結(jié)合等差數(shù)列求和公式,即可求解.【小問1詳解】根據(jù)題意,易知;.【小問2詳解】根據(jù)題意,易知,因為,所以數(shù)列是首項為2,公差為的等差數(shù)列,故21、(1)或;(2)【解析】(1)分直線斜率存在和不存在兩種情況分析,當當過點的直線存在斜率時,設(shè)方程為,利用圓心到直線的距離等于半徑求得k,即可得出答案;(2)求出圓心到直線的距離,再根據(jù)圓的弦長公式即可得出答案.【詳解】解:(1)由題意知圓心的坐標為,半徑,當過點的直線斜率不存在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 保傘工班組安全競賽考核試卷含答案
- 水路危險貨物運輸員崗前生產(chǎn)安全意識考核試卷含答案
- 經(jīng)濟昆蟲產(chǎn)品加工工操作安全測試考核試卷含答案
- 電力電容器真空浸漬工崗前工作水平考核試卷含答案
- 玻纖保全保養(yǎng)工操作管理考核試卷含答案
- 2025年UV無影膠水項目合作計劃書
- 2025年橋接車輛項目合作計劃書
- 環(huán)球環(huán)評培訓課件
- 2025年四川省廣元市中考物理真題卷含答案解析
- 2026屆八省聯(lián)考T8高三一模語文試題答案詳解課件
- 升降貨梯買賣安裝與使用說明書合同
- 河南豫能控股股份有限公司及所管企業(yè)2026屆校園招聘127人考試備考題庫及答案解析
- 房地產(chǎn)公司2025年度總結(jié)暨2026戰(zhàn)略規(guī)劃
- 2026浙江寧波市鄞州人民醫(yī)院醫(yī)共體云龍分院編外人員招聘1人筆試參考題庫及答案解析
- (2025年)新疆公開遴選公務員筆試題及答案解析
- 物業(yè)管家客服培訓課件
- 直銷公司旅游獎勵方案
- 中央空調(diào)多聯(lián)機施工安全管理方案
- 2026年當兵軍事理論訓練測試題及答案解析
- 浙江省嘉興市2024-2025學年高二上學期期末檢測政治試題(含答案)
- 特種設(shè)備安全檢查臺賬
評論
0/150
提交評論