山東省巨野縣一中2026屆高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第1頁(yè)
山東省巨野縣一中2026屆高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第2頁(yè)
山東省巨野縣一中2026屆高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第3頁(yè)
山東省巨野縣一中2026屆高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第4頁(yè)
山東省巨野縣一中2026屆高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省巨野縣一中2026屆高二上數(shù)學(xué)期末統(tǒng)考模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線x21的漸近線方程是()A.y=±x B.y=±xC.y=± D.y=±2x2.已知橢圓上一點(diǎn)到橢圓一個(gè)焦點(diǎn)的距離是,則點(diǎn)到另一個(gè)焦點(diǎn)的距離為()A.2 B.3C.4 D.53.雙曲線(,)的一條漸近線的傾斜角為,則離心率為()A. B.C.2 D.44.若拋物線的焦點(diǎn)與橢圓的左焦點(diǎn)重合,則m的值為()A.4 B.-4C.2 D.-25.若直線l的傾斜角是鈍角,則l的方程可能是()A. B.C. D.6.若等比數(shù)列滿足,,則數(shù)列的公比為()A. B.C. D.7.是橢圓的焦點(diǎn),點(diǎn)在橢圓上,點(diǎn)到的距離為1,則到的距離為()A.3 B.4C.5 D.68.橢圓()的右頂點(diǎn)是拋物線的焦點(diǎn),且短軸長(zhǎng)為2,則該橢圓方程為()A. B.C. D.9.實(shí)數(shù)m變化時(shí),方程表示的曲線不可以是()A.直線 B.圓C橢圓 D.雙曲線10.(文科)已知點(diǎn)為曲線上的動(dòng)點(diǎn),為圓上的動(dòng)點(diǎn),則的最小值是A.3 B.5C. D.11.設(shè)直線,.若,則的值為()A.或 B.或C. D.12.已知直線,,若,則實(shí)數(shù)的值是()A.0 B.2或-1C.0或-3 D.-3二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)在圓上,點(diǎn)在圓上,則的最小值是__________14.在單位正方體中,點(diǎn)E為AD的中點(diǎn),過(guò)點(diǎn)B,E,的平面截該正方體所得的截面面積為_(kāi)_____.15.若橢圓的一個(gè)焦點(diǎn)為,則p的值為_(kāi)_____16.若x,y滿足約束條件,則的最大值為_(kāi)________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在①,②,③,三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問(wèn)題中,并解答.設(shè)數(shù)列是公比大于0的等比數(shù)列,其前項(xiàng)和為,數(shù)列是等差數(shù)列,其前項(xiàng)和為.已知,,,_____________.(1)請(qǐng)寫(xiě)出你選擇條件的序號(hào)____________;并求數(shù)列和的通項(xiàng)公式;(2)求和.18.(12分)要設(shè)計(jì)一種圓柱形、容積為500mL的一體化易拉罐金屬包裝,如何設(shè)計(jì)才能使得總成本最低?19.(12分)已知點(diǎn),,線段是圓的直徑.(1)求圓的方程;(2)過(guò)點(diǎn)的直線與圓相交于,兩點(diǎn),且,求直線的方程.20.(12分)已知橢圓的離心率為,點(diǎn)在橢圓上.(1)求橢圓的方程;(2)過(guò)點(diǎn)作軸的平行線交軸于點(diǎn),過(guò)點(diǎn)的直線與橢圓交于兩個(gè)不同的點(diǎn)、,直線、與軸分別交于、兩點(diǎn),若,求直線的方程;(3)在第(2)問(wèn)條件下,點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn),請(qǐng)問(wèn):當(dāng)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱(chēng)時(shí)的面積是否達(dá)到最大?并說(shuō)明理由.21.(12分)如圖所示,在空間四邊形中,,分別為,的中點(diǎn),,分別在,上,且.求證:(1)、、、四點(diǎn)共面;(2)與的交點(diǎn)在直線上22.(10分)已知直線l過(guò)定點(diǎn)(1)若直線l與直線垂直,求直線l的方程;(2)若直線l在兩坐標(biāo)軸上的截距相等,求直線l的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)雙曲線漸近線定義即可求解.【詳解】雙曲線的方程為,雙曲線的漸近線方程為,故選:D【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),屬于容易題.2、C【解析】根據(jù)橢圓的定義,結(jié)合題意,即可求得結(jié)果.【詳解】設(shè)橢圓的兩個(gè)焦點(diǎn)分別為,故可得,又到橢圓一個(gè)焦點(diǎn)的距離是,故點(diǎn)到另一個(gè)焦點(diǎn)的距離為.故選:.3、C【解析】根據(jù)雙曲線方程寫(xiě)出漸近線方程,得出,進(jìn)而可求出雙曲線的離心率.【詳解】因?yàn)殡p曲線的漸近線方程為,又其中一條漸近線的傾斜角為,所以,則,所以該雙曲線離心率為.故選:C.4、B【解析】根據(jù)拋物線和橢圓焦點(diǎn)與其各自標(biāo)準(zhǔn)方程的關(guān)系即可求解.【詳解】由題可知拋物線焦點(diǎn)為,橢圓左焦點(diǎn)為,∴.故選:B.5、A【解析】根據(jù)直線方程,求得直線斜率,再根據(jù)傾斜角和斜率的關(guān)系,即可判斷和選擇.【詳解】若直線的傾斜角為,則,當(dāng)時(shí),為鈍角,當(dāng),,當(dāng),為銳角;當(dāng)不存在時(shí),傾斜角為,對(duì)A:,顯然傾斜角為鈍角;對(duì)B:,傾斜角為銳角;對(duì)C:,傾斜角為銳角;對(duì)D:不存在,此時(shí)傾斜角為直角.故選:A.6、D【解析】設(shè)等比數(shù)列的公比為,然后由已知條件列方程組求解即可【詳解】設(shè)等比數(shù)列的公比為,因?yàn)?,,所以,所以,解得,故選:D7、C【解析】利用橢圓的定義直接求解【詳解】由題意得,得,因?yàn)?,,所以,故選:C8、A【解析】求得拋物線的焦點(diǎn)從而求得,再結(jié)合題意求得,即可寫(xiě)出橢圓方程.【詳解】因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,故可得;又短軸長(zhǎng)為2,故可得,即;故橢圓方程為:.故選:.9、B【解析】根據(jù)的取值分類(lèi)討論說(shuō)明【詳解】時(shí)方程化為,為直線,時(shí),方程化為,為橢圓,時(shí),方程化為,為雙曲線,而,因此曲線不可能是圓故選:B10、A【解析】數(shù)形結(jié)合分析可得,當(dāng)時(shí)能夠取得的最小值,根據(jù)點(diǎn)到圓心的距離減去半徑求解即可.【詳解】由對(duì)勾函數(shù)的性質(zhì),可知,當(dāng)且僅當(dāng)時(shí)取等號(hào),結(jié)合圖象可知當(dāng)A點(diǎn)運(yùn)動(dòng)到時(shí)能使點(diǎn)到圓心的距離最小,最小為4,從而的最小值為.故選:A【點(diǎn)睛】本題考查兩動(dòng)點(diǎn)間距離的最值問(wèn)題,考查轉(zhuǎn)化思想與數(shù)形結(jié)合思想,屬于中檔題.11、A【解析】由兩直線垂直可得出關(guān)于實(shí)數(shù)的等式,即可解得實(shí)數(shù)的值.【詳解】因?yàn)?,則,解得或.故選:A.12、C【解析】由,結(jié)合兩直線一般式有列方程求解即可.【詳解】由知:,解得:或故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、3-5【解析】因?yàn)辄c(diǎn)在圓上,點(diǎn)在圓上,故兩圓的圓心分別為半徑分別為和兩圓的圓心距為,故兩圓相離,則最小值為,故答案為.考點(diǎn):1、圓的方程及圓的幾何性質(zhì);2、兩點(diǎn)間的距離公式及最值問(wèn)題.【方法點(diǎn)晴】本題主要考查圓的方程及幾何性質(zhì)、兩點(diǎn)間的距離公式及最值問(wèn)題的應(yīng)用,屬于難題.解決解析幾何的最值問(wèn)題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來(lái)解決,非常巧妙;二是將解析幾何中最值問(wèn)題轉(zhuǎn)化為函數(shù)問(wèn)題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法,本題就是利用圓的幾何性質(zhì),將的最小值轉(zhuǎn)化兩圓心的距離減半徑解答的.14、【解析】根據(jù)題意,取的中點(diǎn),連接、、、,分析可得四邊形為平行四邊形,則要求的截面就是四邊形,進(jìn)而可得為菱形,連接、,求出、的長(zhǎng),計(jì)算可得答案【詳解】根據(jù)題意,取的中點(diǎn),連接、、、,易得,,則四邊形為平行四邊形,過(guò)點(diǎn),,的截面就是,又由正方體為單位正方體,則,則為菱形,連接、,易得,,則,即要求截面的面積為,故答案為:15、3【解析】利用橢圓標(biāo)準(zhǔn)方程概念求解【詳解】因?yàn)榻裹c(diǎn)為,所以焦點(diǎn)在y軸上,所以故答案:316、3【解析】根據(jù)題意,畫(huà)出可行域,找出最優(yōu)解,即可求解.【詳解】根據(jù)題意,不等式組所表示的可行域如圖陰影部分,由圖易知,取最大值的最優(yōu)解為,故.故答案為:3三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)選①,,;選②,,;選③,,;(2),【解析】(1)選條件①根據(jù)等比數(shù)列列出方程求出公比得通項(xiàng)公式,再由等差數(shù)列列出方程求出首項(xiàng)與公差可得通項(xiàng)公式,選②③與①相同的方法求數(shù)列的通項(xiàng)公式;(2)根據(jù)等比數(shù)列、等差數(shù)列的求和公式解計(jì)算即可.【小問(wèn)1詳解】選條件①:設(shè)等比數(shù)列的公比為q,,,解得或,,,.設(shè)等差數(shù)列的公差為d,,,解得,,.選條件②:設(shè)等比數(shù)列的公比為q,,,解得或,,,.設(shè)等差數(shù)列的公差為,,,解得,,選條件③:設(shè)等比數(shù)列的公比為,,,解得或,,,.設(shè)等差數(shù)列的公差為,,,解得,【小問(wèn)2詳解】由(1)知,,18、當(dāng)圓柱底面半徑為,高為時(shí),總成本最底.【解析】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,進(jìn)而根據(jù)體積得到,然后求出表面積,進(jìn)而運(yùn)用導(dǎo)數(shù)的方法求得表面積的最小值,此時(shí)成本最小.【詳解】設(shè)圓柱底面半徑為cm,高為cm,圓柱表面積為Scm2,每平方厘米金屬包裝造價(jià)為元,由題意得:,則,表面積造價(jià),,令,得,令,得,的單調(diào)遞減區(qū)間為,遞增區(qū)間為,當(dāng)圓柱底面半徑為,高為時(shí),總成本最底.19、(1);(2)或.【解析】(1)AB兩點(diǎn)的中點(diǎn)為圓心,AB兩點(diǎn)距離的一半為半徑;(2)分斜率存在和不存在,根據(jù)垂徑定理即可求解.【小問(wèn)1詳解】已知點(diǎn),,線段是圓M的直徑,則圓心坐標(biāo)為,∴半徑,∴圓的方程為;【小問(wèn)2詳解】由(1)可知圓的圓心,半徑為.設(shè)為中點(diǎn),則,,則.當(dāng)?shù)男甭什淮嬖跁r(shí),的方程為,此時(shí),符合題意;當(dāng)?shù)男甭蚀嬖跁r(shí),設(shè)的方程為,即kx-y+2=0,則,解得,故直線的方程為,即.綜上,直線的方程為或.20、(1);(2);(3)當(dāng)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱(chēng)時(shí),的面積達(dá)到最大,理由見(jiàn)解析.【解析】(1)設(shè),可得出,,將點(diǎn)的坐標(biāo)代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)分析可知直線的斜率存在,設(shè)直線的方程為,設(shè)點(diǎn)、,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由已知可得,結(jié)合韋達(dá)定理可求得的值,即可得出直線的方程;(3)設(shè)與直線平行且與橢圓相切的直線的方程為,將該直線方程與橢圓的方程聯(lián)立,由判別式為零可求得,分析可知當(dāng)點(diǎn)為直線與橢圓的切點(diǎn)時(shí),的面積達(dá)到最大,求出直線與橢圓的切點(diǎn)坐標(biāo),可得出結(jié)論.【小問(wèn)1詳解】解:因?yàn)?,設(shè),則,,所以,橢圓的方程可表示為,將點(diǎn)的坐標(biāo)代入橢圓的方程可得,解得,因此,橢圓的方程為.【小問(wèn)2詳解】解:設(shè)線段的中點(diǎn)為,因?yàn)?,則軸,故直線、的傾斜角互補(bǔ),易知點(diǎn),若直線軸,則、為橢圓短軸的兩個(gè)頂點(diǎn),不妨設(shè)點(diǎn)、,則,,,不合乎題意.所以,直線的斜率存在,設(shè)直線的方程為,設(shè)點(diǎn)、,聯(lián)立,可得,,由韋達(dá)定理可得,,,,則,所以,解得,因此,直線的方程為.【小問(wèn)3詳解】解:設(shè)與直線平行且與橢圓相切的直線的方程為,聯(lián)立,可得(*),,解得,由題意可知,當(dāng)點(diǎn)為直線與橢圓的切點(diǎn)時(shí),此時(shí)的面積取最大值,當(dāng)時(shí),方程(*)為,解得,此時(shí),即點(diǎn).此時(shí),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱(chēng),因此,當(dāng)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱(chēng)時(shí),的面積達(dá)到最大.【點(diǎn)睛】方法點(diǎn)睛:圓錐曲線中的最值問(wèn)題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來(lái)求最值;二是代數(shù)法,常將圓錐曲線的最值問(wèn)題轉(zhuǎn)化為二次函數(shù)或三角函數(shù)的最值問(wèn)題,然后利用基本不等式、函數(shù)的單調(diào)性或三角函數(shù)的有界性等求最值21、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析【解析】(1)由平行關(guān)系轉(zhuǎn)化,可得,即可證明四點(diǎn)共面;(2)由條件證明與的交點(diǎn)既在平面上,又在平面上,即可證明.【詳解】證明(1)∵,∴∵,分別為,的中點(diǎn),∴,∴,∴,,,四點(diǎn)共面(2)∵,不是

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論