2026屆宜賓市重點中學高二數學第一學期期末質量檢測模擬試題含解析_第1頁
2026屆宜賓市重點中學高二數學第一學期期末質量檢測模擬試題含解析_第2頁
2026屆宜賓市重點中學高二數學第一學期期末質量檢測模擬試題含解析_第3頁
2026屆宜賓市重點中學高二數學第一學期期末質量檢測模擬試題含解析_第4頁
2026屆宜賓市重點中學高二數學第一學期期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆宜賓市重點中學高二數學第一學期期末質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的離心率為,直線與橢圓交于兩點,為坐標原點,且,則橢圓的方程為A B.C. D.2.某程序框圖如圖所示,該程序運行后輸出的值是()A. B.C. D.3.某學習小組研究一種衛(wèi)星接收天線(如圖①所示),發(fā)現其曲面與軸截面的交線為拋物線,在軸截面內的衛(wèi)星波束呈近似平行狀態(tài)射入形為拋物線的接收天線,經反射聚焦到焦點處(如圖②所示).已知接收天線的口徑(直徑)為3.6m,深度為0.6m,則該拋物線的焦點到頂點的距離為()A.1.35m B.2.05mC.2.7m D.5.4m4.如圖,已知最底層正方體的棱長為a,上層正方體下底面的四個頂點是下層正方體上底面各邊的中點,依此方法一直繼續(xù)下去,則所有這些正方體的體積之和將趨近于()A. B.C. D.5.將函數的圖象向左平移個單位長度后,得到函數的圖象,則()A. B.C. D.6.已知函數,則曲線在點處的切線與坐標軸圍成的三角形的面積是()A B.C. D.7.設aR,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.已知圓C過點,圓心在x軸上,則圓C的方程為()A. B.C. D.9.經過點且圓心是兩直線與的交點的圓的方程為()A. B.C. D.10.已知,是雙曲線C:(,)的兩個焦點,過點與x軸垂直的直線與雙曲線C交于A、B兩點,若是等腰直角三角形,則雙曲線C的離心率為()A. B.C. D.11.如圖,在平行六面體(底面為平行四邊形的四棱柱)中,E為延長線上一點,,則=()A. B.C. D.12.設變量,滿足約束條件,則的最大值為()A.1 B.6C.10 D.13二、填空題:本題共4小題,每小題5分,共20分。13.平行六面體中,底面是邊長為1的正方形,,則對角線的長度為___.14.已知橢圓的焦點分別為,A為橢圓上一點,則________15.若數列滿足,,則__________16.已知函數,若在上是增函數,則實數的取值范圍是________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在等差數列中,,.(1)求數列通項公式;(2)若,求數列的前項和.18.(12分)已知,2,4,6中的三個數為等差數列的前三項,且100不在數列中,102在數列中.(1)求數列的通項;(2)設,求數列的前項和.19.(12分)已知橢圓的一個焦點是,且離心率.(1)求橢圓的方程;(2)設過點的直線交于兩點,線段的垂直平分線交軸于點,求的取值范圍.20.(12分)已知(1)若函數在上有極值,求實數a的取值范圍;(2)已知方程有兩個不等實根,證明:(注:是自然對數的底數)21.(12分)設橢圓的左,右焦點分別為,其離心率為,且點在C上.(1)求C的方程;(2)O為坐標原點,P為C上任意一點.若M為的中點,過M且平行于的直線l交橢圓C于A,B兩點,是否存在實數,使得?若存在,求值;若不存在,說明理由.22.(10分)已知函數.(1)當時,求函數的極大值與極小值;(2)若函數在上的最大值是最小值的3倍,求a的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據等腰直角三角形的性質可得,將代入橢圓方程,結合離心率為以及性質列方程組求得與的值,從而可得結果.【詳解】設直線與橢圓在第一象限的交點為,因為,所以,即,由可得,,故所求橢圓的方程為.故選D.【點睛】本題主要考查橢圓的標準方程與性質,以及橢圓離心率的應用,意在考查對基礎知識掌握的熟練程度,屬于中檔題.2、B【解析】模擬程序運行后,可得到輸出結果,利用裂項相消法即可求出答案.【詳解】模擬程序運行過程如下:0),判斷為否,進入循環(huán)結構,1),判斷為否,進入循環(huán)結構,2),判斷為否,進入循環(huán)結構,3),判斷為否,進入循環(huán)結構,……9),判斷為否,進入循環(huán)結構,10),判斷為是,故輸出,故選:B.【點睛】本題主要考查程序框圖,考查裂項相消法,難度不大.一般遇見程序框圖求輸出結果時,常模擬程序運行以得到結論.3、A【解析】根據題意先建立恰當的坐標系,可設出拋物線方程,利用已知條件得出點在拋物線上,代入方程求得p值,進而求得焦點到頂點的距離.【詳解】如圖所示,在接收天線的軸截面所在平面上建立平面直角坐標系xOy,使接收天線的頂點(即拋物線的頂點)與原點O重合,焦點F在x軸上設拋物線的標準方程為,由已知條件可得,點在拋物線上,所以,解得,因此,該拋物線的焦點到頂點的距離為1.35m,故選:A.4、D【解析】由已知可判斷出所有這些正方體的體積構成首項為,公比為的等比數列,然后求和可得答案.【詳解】最底層上面第一個正方體的棱長為,其體積為,上面第二個正方體的棱長為,其體積為,上面第三個正方體的棱長為,其體積為,所有這些正方體的體積構成首項為,公比為的等比數列,其前項和為,當,,所以所有這些正方體的體積之和將趨近于.故選:D.5、A【解析】先化簡函數表達式,然后再平移即可.【詳解】函數的圖象向左平移個單位長度后,得到的圖象.故選:A6、B【解析】根據導數的幾何意義,求出切線方程,求出切線和橫截距a和縱截距b,面積為【詳解】由題意可得,所以,則所求切線方程為令,得;令,得故所求三角形的面積為故選:B7、A【解析】運用兩直線平行的充要條件得出l1與l2平行時a的值,而后運用充分必要條件的知識來解決即可解:∵當a=1時,直線l1:x+2y﹣1=0與直線l2:x+2y+4=0,兩條直線的斜率都是﹣,截距不相等,得到兩條直線平行,故前者是后者的充分條件,∵當兩條直線平行時,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要條件故選A考點:必要條件、充分條件與充要條件的判斷;直線的一般式方程與直線的平行關系8、C【解析】設出圓的標準方程,將已知點的坐標代入,解方程組即可.【詳解】設圓的標準方程為,將坐標代入得:,解得,故圓的方程為,故選:C.9、B【解析】求出圓心坐標和半徑后,直接寫出圓的標準方程.【詳解】由得,即所求圓的圓心坐標為.由該圓過點,得其半徑為1,故圓的方程為.故選:B.【點睛】本題考查了圓的標準方程,屬于基礎題.10、B【解析】根據等腰直角三角形的性質,結合雙曲線的離心率公式進行求解即可.【詳解】由題意不妨設,,當時,由,不妨設,因為是等腰直角三角形,所以有,或舍去,故選:B11、A【解析】根據空間向量的加減法運算法則,直接寫出向量的表達式,即可得答案.【詳解】=,故選:A.12、C【解析】畫出約束條件表示的平面區(qū)域,將變形為,可得需要截距最小,觀察圖象,可得過點時截距最小,求出點A坐標,代入目標式即可.【詳解】解:畫出約束條件表示的平面區(qū)域如圖中陰影部分:又,即,要取最大值,則在軸上截距要最小,觀察圖象可得過點時截距最小,由,得,則.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】利用,兩邊平方后,利用向量數量積計算公式,計算得.【詳解】對兩邊平方并化簡得,故.【點睛】本小題主要考查空間向量的加法和減法運算,考查空間向量數量積的表示,屬于中檔題.14、4【解析】直接利用橢圓的定義即可求解.【詳解】因為橢圓的焦點分別為,A為橢圓上一點,所以.故答案為:415、7【解析】根據遞推公式,依次求得值.【詳解】依題意,由,可知,故答案為:716、【解析】根據函數在上是增函數,分段函數在整個定義域內單調,則在每個函數內單調,注意銜接點的函數值.【詳解】解:因為函數在上是增函數,所以在區(qū)間上是增函數且在區(qū)間上也是增函數,對于函數在上是增函數,則;①對于函數,(1)當時,,外函數為定義域內的減函數,內函數在上是增函數,根據復合函數“同增異減”可得時函數在區(qū)間上是減函數,不符合題意,故舍去,(2)當時,外函數為定義域內的增函數,要使函數在區(qū)間上是增函數,則內函數在上也是增函數,且對數函數真數大于0,即在上也要恒成立,所以,又,所以,②又在上是增函數則在銜接點處函數值應滿足:,化簡得,③由①②③得,,所以實數的取值范圍是.故答案為:.【點睛】方法點睛:利用單調性求參數方法如下:(1)依據函數的圖象或單調性定義,確定函數的單調區(qū)間,與已知單調區(qū)間比較;(2)需注意若函數在區(qū)間上是單調的,則該函數在此區(qū)間的任意子集上也是單調的;(3)分段函數的單調性,除注意各段的單調性外,還要注意銜接點的取值三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用等差數列的基本量,根據題意,列出方程,即可求得公差以及通項公式;(2)根據(1)中所求,結合等差數列的前項和的公式,求得,以及,再利用等比數列的前項和公式求得.【小問1詳解】因為,所以,故可得,所以.【小問2詳解】因為,所以.于是,令,則.顯然數列是等比數列,且,公比,所以數列的前n項和.18、(1)(2)【解析】(1)確定數列為遞增數列,然后由4個數確定等差數列,得通項公式,驗證100和102是否為數列中的項得結論;(2)由裂項相消法求和【小問1詳解】首先數列是遞增數列,當2,4,6為的前三項時,易知此時,100,102都是該數列中的項,不滿足題意當,2,6為的前三項時,易知此時,100不是該數列中的項,102是該數列中的項,滿足題意所以【小問2詳解】因為所以所以.19、(1)(2)【解析】(1)由條件可得,,然后可得答案;(2)設直線的方程為,,聯立直線與橢圓的方程消元,然后算出中點的坐標,然后可得線段的垂直平分線方程,然后可得,然后可求出答案.【小問1詳解】因為橢圓的一個焦點是,且離心率所以,,所以所以橢圓的方程為【小問2詳解】顯然直線的斜率不為0,設直線的方程為,聯立可得,所以所以中點的縱坐標為,橫坐標為所以線段的垂直平分線方程為令,可得當時,當時,,因為,所以綜上:20、(1)(2)證明見解析.【解析】(1)利用導數判斷出在上單增,在上單減,在處取得唯一的極值,列不等式組,即可求出實數a的取值范圍;(2)記函數,把證明,轉化為只需證明,用分析法證明即可.【小問1詳解】,定義域為,.令,解得:;令,解得:所以在上單增,在上單減,在處取得唯一的極值.要使函數在上有極值,只需,解得:,即實數a的取值范圍為.【小問2詳解】記函數.則函數有兩個不等實根.因為,,兩式相減得,,兩式相加得,.因為,所以要證,只需證明,只需證明,只需證明,.證.設,只需證明.記,則,所以在上2單增,所以,所以,即,所以.即證.【點睛】導數是研究函數的單調性、極值(最值)最有效的工具,而函數是高中數學中重要的知識點,對導數的應用的考查主要從以下幾個角度進行:(1)考查導數的幾何意義,往往與解析幾何、微積分相聯系;(2)利用導數求函數的單調區(qū)間,判斷單調性;已知單調性,求參數;(3)利用導數求函數的最值(極值),解決生活中的優(yōu)化問題;(4)利用導數證明不等式21、(1);(2).【解析】(1)列出關于a、b、c的方程組求解即可;(2)直線l斜率不存在時,易得λ的值;斜率存在時,設l方程為,聯立直線l與橢圓C的方程,求出;求出OP方程,聯立OP方程與橢圓C的方程,求出;代入即可求得λ.【小問1詳解】由已知可得,解得,∴橢圓C的標準方程為.【小問2詳解】若直線的斜率不存在時,,∴;當斜率存在時,設直線l的方程為.聯立直線l與橢圓方程,消去y,得,∴.∵,設直線的方程為,聯立直線與橢圓方程,消去y,得,解得.∴,∴,同理,∴,∵,∴,故,存在滿足條件,綜上可得,存在滿足條件.【點睛】關鍵點點睛:本題的關鍵在于弦長公式的運用,AB斜率為k,,M

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論