江蘇省南京市江寧區(qū)2026屆數(shù)學(xué)高二上期末達標(biāo)檢測模擬試題含解析_第1頁
江蘇省南京市江寧區(qū)2026屆數(shù)學(xué)高二上期末達標(biāo)檢測模擬試題含解析_第2頁
江蘇省南京市江寧區(qū)2026屆數(shù)學(xué)高二上期末達標(biāo)檢測模擬試題含解析_第3頁
江蘇省南京市江寧區(qū)2026屆數(shù)學(xué)高二上期末達標(biāo)檢測模擬試題含解析_第4頁
江蘇省南京市江寧區(qū)2026屆數(shù)學(xué)高二上期末達標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省南京市江寧區(qū)2026屆數(shù)學(xué)高二上期末達標(biāo)檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,則中元素的個數(shù)為()A.3 B.2C.1 D.02.橢圓=1的一個焦點為F,過原點O作直線(不經(jīng)過焦點F)與橢圓交于A,B兩點,若△ABF的面積是20,則直線AB的斜率為()A. B.C. D.3.在各項都為正數(shù)的數(shù)列中,首項為數(shù)列的前項和,且,則()A. B.C. D.4.已知橢圓的左右焦點分別為、,點在橢圓上,若、、是一個直角三角形的三個頂點,則點到軸的距離為A B.4C. D.5.已知兩條不同直線和平面,下列判斷正確的是()A.若則 B.若則C.若則 D.若則6.等差數(shù)列前項和,已知,,則的值是().A. B.C. D.7.已知橢圓的離心率為,雙曲線的離心率為,則()A. B.C. D.8.函數(shù)的導(dǎo)函數(shù)為()A. B.C. D.9.設(shè)是公差的等差數(shù)列,如果,那么()A. B.C. D.10.已知空間四個點,,,,則直線AD與平面ABC所成的角為()A. B.C. D.11.橢圓上的一點M到其左焦點的距離為2,N是的中點,則等于()A.1 B.2C.4 D.812.已知三棱錐的各頂點都在同一球面上,且平面,若該棱錐的體積為,,,,則此球的表面積等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.等差數(shù)列的前項和為,已知,則__.14.過點,的直線方程(一般式)為___________.15.已知函數(shù),則________16.點到直線的距離為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,滿足(2a﹣b)sinA+(2b﹣a)sinB=2csinC.(1)求角C的大小;(2)若cosA=,求的值.18.(12分)如圖甲,平面圖形中,,沿將折起,使點到點的位置,如圖乙,使.(1)求證:平面平面;(2)若點滿足,求點到直線的距離.19.(12分)已知,,分別是銳角內(nèi)角,,對邊,,.(1)求的值;(2)若的面積為,求的值.20.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,,平面底面ABCD,Q為AD的中點,M是棱PC的中點,,,(1)求證:;(2)求直線PB與平面MQB所成角的正弦值21.(12分)已知橢圓的離心率為,右焦點為F,點A(a,0),且|AF|=1(1)求橢圓C的方程;(2)過點F的直線l(不與x軸重合)交橢圓C于點M,N,直線MA,NA分別與直線x=4交于點P,Q,求∠PFQ的大小22.(10分)已知直線經(jīng)過點且斜率為(1)求直線的一般式方程(2)求與直線平行,且過點的直線的一般式方程(3)求與直線垂直,且過點的直線的一般式方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】集合中的元素為點集,由題意,可知集合A表示以為圓心,為半徑的單位圓上所有點組成的集合,集合B表示直線上所有的點組成的集合,又圓與直線相交于兩點,,則中有2個元素.故選B.【名師點睛】求集合的基本運算時,要認清集合元素的屬性(是點集、數(shù)集或其他情形)和化簡集合,這是正確求解集合運算的兩個先決條件.集合中元素的三個特性中的互異性對解題影響較大,特別是含有字母的集合,在求出字母的值后,要注意檢驗集合中的元素是否滿足互異性.2、A【解析】分情況討論當(dāng)直線AB的斜率不存在時,可求面積,檢驗是否滿足條件,當(dāng)直線AB的斜率存在時,可設(shè)直線AB的方程y=kx,聯(lián)立橢圓方程,可求△ABF2的面積為S=2代入可求k【詳解】由橢圓=1,則焦點分別為F1(-5,0),F(xiàn)2(5,0),不妨取F(5,0)①當(dāng)直線AB的斜率不存在時,直線AB的方程為x=0,此時AB=4,=AB?5=×5=10,不符合題意;②可設(shè)直線AB的方程y=kx,由,可得(4+9k2)x2=180,∴xA=6,yA=,∴△ABF2的面積為S=2=2××5×=20,∴k=±故選:A3、C【解析】當(dāng)時,,故可以得到,因為,進而得到,所以是等比數(shù)列,進而求出【詳解】由,得,得,又數(shù)列各項均為正數(shù),且,∴,∴,即∴數(shù)列是首項,公比的等比數(shù)列,其前項和,得,故選:C.4、D【解析】設(shè)橢圓短軸的一個端點為根據(jù)橢圓方程求得c,進而判斷出,即得或令,進而可得點P到x軸的距離【詳解】解:設(shè)橢圓短軸的一個端點為M由于,,;,只能或令,得,故選D【點睛】本題主要考查了橢圓的基本應(yīng)用考查了學(xué)生推理和實際運算能力是基礎(chǔ)題5、D【解析】根據(jù)線線、線面、面面的平行與垂直的位置關(guān)系即可判斷.【詳解】解:對于選項A:若,則與可能平行,可能相交,可能異面,故選項A錯誤;對于選項B:若,則,故選項B錯誤;對于選項C:當(dāng)時不滿足,故選項C錯誤;綜上,可知選項D正確.故選:D.6、C【解析】由題意,設(shè)等差數(shù)列的公差為,則,故,故,故選7、D【解析】根據(jù)給定的方程求出離心率,的表達式,再計算判斷作答.【詳解】因橢圓的離心率為,則有,因雙曲線的離心率為,則有,所以.故選:D8、B【解析】利用復(fù)合函數(shù)求導(dǎo)法則即可求導(dǎo).【詳解】,故選:B.9、D【解析】由已知可得,即可得解.【詳解】由已知可得.故選:D.10、A【解析】根據(jù)向量法求出線面角即可.【詳解】設(shè)平面的法向量為,直線AD與平面ABC所成的角為令,則則故選:A【點睛】本題主要考查了利用向量法求線面角,屬于中檔題.11、C【解析】先利用橢圓定義得到,再利用中位線定理得即可.【詳解】由橢圓方程,得,由橢圓定義得,又,,又為的中點,為的中點,線段為中位線,∴.故選:C.12、D【解析】由條件確定三棱錐的外接球的球心位置及球的半徑,再利用球的表面積公式求外接球的表面積.【詳解】由已知,,,可得三棱錐的底面是直角三角形,,由平面可得就是三棱錐外接球的直徑,,,即,則,故三棱錐外接球的半徑為,所以三棱錐外接球的表面積為故選:D.【點睛】與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,如球內(nèi)切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)等差數(shù)列的求和公式和等差數(shù)列的性質(zhì)即可求出.【詳解】因為等差數(shù)列的前項和為,,則,故答案為:33.【點睛】本題考查了等差數(shù)列的求和公式和等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.14、【解析】利用兩點式方程可求直線方程.【詳解】∵直線過點,,∴,∴,化簡得.故答案為:.15、.【解析】將代入計算,利用和互為相反數(shù),作差可得,計算可得結(jié)果.【詳解】解:函數(shù)則.,,作差可得:,即,解得:代入此時成立.故答案為:.16、【解析】利用點到直線的距離公式即可得出【詳解】利用點到直線的距離可得:故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用正弦定理、余弦定理化簡已知條件,求得,由此求得.(2)先求得,結(jié)合兩角差的正弦公式求得.【小問1詳解】,,即,,,.【小問2詳解】由,可得,.18、(1)證明見解析(2)【解析】(1)利用給定條件可得平面,再證即可證得平面推理作答.(2)由(1)得EA,EB,EG兩兩垂直,建立空間直角坐標(biāo)系,先求出向量在向量上的投影的長,然后由勾股定理可得答案.【小問1詳解】因為,則,且,又,平面,因此,平面,即有平面,平面,則,而,則四邊形為等腰梯形,又,則有,于是有,則,即,,平面,因此,平面,而平面,所以平面平面.【小問2詳解】由(1)知,EA,EB,EG兩兩垂直,以點E為原點,射線EA,EB,EG分別為x,y,z軸非負半軸建立空間直角坐標(biāo)系,如圖,因,四邊形是矩形,則,即,,,由,則則則向量在向量上的投影的長為又,所以點到直線的距離19、(1);(2)4.【解析】(1)由正弦定理即可得答案.(2)根據(jù)題意得到,再由關(guān)于角的余弦定理和整理化簡得,再由的面積,即可求出的值.【小問1詳解】由及正弦定理可得.小問2詳解】由銳角中得,根據(jù)余弦定理可得,代入得,整理得,即,解得,,解得.20、(1)證明見解析(2)【解析】(1)根據(jù)等腰三角形可得,再由面面垂直的性質(zhì)得出線面垂直,即可求證;(2)建立空間直角坐標(biāo)系,利用向量法求線面角.【小問1詳解】因為Q為AD的中點,,所以,又因為平面底面ABCD,平面底面,平面PAD,所以平面ABCD,又平面ABCD,所以【小問2詳解】由題可知QA、QB、QP兩兩互相垂直,以QA為x軸、QB為y軸、QP為z軸建立空間坐標(biāo)系,如圖,根據(jù)題意,則,,,,,由M是棱PC的中點可知,,設(shè)平面MQB的法向量為,,,則,即令,則,,故平面MQB的一個法向量為,所以,所以直線PB與平面MQB所成角的正弦值為21、(1)(2)∠PFQ=90°【解析】(1)由題意得求出a,c,然后求解b,即可得到橢圓方程(2)當(dāng)直線l的斜率不存在時,驗證,即∠PFQ=90°.當(dāng)直線l的斜率存在時,設(shè)l:y=k(x﹣1),其中k≠0.聯(lián)立得(4k2+3)x2﹣8k2x+4k2﹣12=0.由題意,知Δ>0恒成立,設(shè)M(x1,y1),N(x2,y2),利用韋達定理,結(jié)合直線MA的方程為.求出、.利用向量的數(shù)量積,轉(zhuǎn)化求解即可【小問1詳解】由題意得解得a=2,c=1,從而,所以橢圓C的方程為【小問2詳解】當(dāng)直線l的斜率不存在時,有,,P(4,﹣3),Q(4,3),F(xiàn)(1,0),則,,故,即∠PFQ=90°當(dāng)直線l的斜率存在時,設(shè)l:y=k(x﹣1),其中k≠0聯(lián)立得(4k2+3)x2﹣8k2x+4k2﹣12=0由題意

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論