2026屆吉林省長春實驗中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第1頁
2026屆吉林省長春實驗中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第2頁
2026屆吉林省長春實驗中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第3頁
2026屆吉林省長春實驗中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第4頁
2026屆吉林省長春實驗中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆吉林省長春實驗中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知奇函數(shù),則的解集為()A. B.C. D.2.若直線l的傾斜角是鈍角,則l的方程可能是()A. B.C. D.3.直線在軸上的截距為,在軸上的截距為,則有()A., B.,C., D.,4.下列直線中,傾斜角最大的為()A. B.C. D.5.若數(shù)列{an}滿足……,則稱數(shù)列{an}為“半差遞增”數(shù)列.已知“半差遞增”數(shù)列{cn}的前n項和Sn滿足,則實數(shù)t的取值范圍是()A. B.(-∞,1)C. D.(1,+∞)6.“”是“直線與互相垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知,且直線始終平分圓的周長,則的最小值是()A.2 B.C.6 D.168.小方每次投籃的命中率為,假設(shè)每次投籃相互獨立,則他連續(xù)投籃2次,恰有1次命中的概率為()A. B.C. D.9.已知實數(shù),滿足則的最大值為()A.-1 B.0C.1 D.210.?dāng)?shù)列是等比數(shù)列,是其前n項之積,若,則的值是()A.1024 B.256C.2 D.51211.一個盒子里有3個分別標(biāo)有號碼為1,2,3小球,每次取出一個,記下它的標(biāo)號后再放回盒子中,共取2次,則在兩次取得小球中,標(biāo)號最大值是3的概率為()A. B.C. D.12.雙曲線的左、右焦點分別為、,點P在雙曲線右支上,,,則C的離心率為()A. B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.用數(shù)字1,2,3,4,5,6,7,8,9組成沒有重復(fù)數(shù)字,且至多有一個數(shù)字是奇數(shù)的四位數(shù),這樣的四位數(shù)一共有___________個.(用數(shù)字作答)14.某n重伯努利試驗中,事件A發(fā)生的概率為p,事件A發(fā)生的次數(shù)記為X,,,則______15.若,m,三個數(shù)成等差數(shù)列,則圓錐曲線的離心率為______16.?dāng)?shù)學(xué)家歐拉年在其所著的《三角形幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線,已知的頂點、,其歐拉線的方程為,則的外接圓方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點為,點在拋物線上,且的面積為(為坐標(biāo)原點)(1)求拋物線的標(biāo)準(zhǔn)方程;(2)點、是拋物線上異于原點的兩點,直線、的斜率分別為、,若,求證:直線恒過定點18.(12分)已知圓,直線(1)判斷直線l與圓C的位置關(guān)系;(2)過點作圓C的切線,求切線的方程19.(12分)已知是拋物線的焦點,點在拋物線上,且.(1)求的方程;(2)過上一動點作的切線交軸于點.判斷線段的中垂線是否過定點?若過定點,求出定點坐標(biāo);若不過定點,請說明理由.20.(12分)已知點A(1,2)在拋物線C∶上,過點A作兩條直線分別交拋物線于點D,E,直線AD,AE的斜率分別為kAD,kAE,若直線DE過點P(-1,-2)(1)求拋物線C的方程;(2)求直線AD,AE的斜率之積.21.(12分)已知如圖①,在菱形ABCD中,且,為AD的中點,將沿BE折起使,得到如圖②所示的四棱錐,在四棱錐中,求解下列問題:(1)求證:BC平面ABE;(2)若P為AC中點,求二面角的余弦值.22.(10分)某雙曲線型自然冷卻通風(fēng)塔的外形是由圖1中的雙曲線的一部分繞其虛軸所在的直線旋轉(zhuǎn)一周所形成的曲面,如圖2所示.雙曲線的左、右頂點分別為、.已知該冷卻通風(fēng)塔的最窄處是圓O,其半徑為1;上口為圓,其半徑為;下口為圓,其半徑為;高(即圓與所在平面間的距離)為.(1)求此雙曲線的方程;(2)以原平面直角坐標(biāo)系的基礎(chǔ)上,保持原點和x軸、y軸不變,建立空間直角坐標(biāo)系,如圖3所示.在上口圓上任取一點,在下口圓上任取一點.請給出、的值,并求出與的值;(3)在(2)的條件下,是否存在點P、Q,使得P、A、Q三點共線.若不存在,請說明理由;若存在,求出點P、Q的坐標(biāo),并證明此時線段PQ上任意一點都在曲面上.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】先由求出的值,進(jìn)而可得的解析式,對求導(dǎo),利用基本不等式可判斷恒成立,可判斷的單調(diào)性,根據(jù)單調(diào)性脫掉,再解不等式即可.【詳解】的定義域為,因為是奇函數(shù),所以,可得:,所以,經(jīng)檢驗是奇函數(shù),符合題意,所以,因為,所以,當(dāng)且僅當(dāng)即時等號成立,所以在上單調(diào)遞增,由可得,即,解得:或,所以的解集為,故選:A.2、A【解析】根據(jù)直線方程,求得直線斜率,再根據(jù)傾斜角和斜率的關(guān)系,即可判斷和選擇.【詳解】若直線的傾斜角為,則,當(dāng)時,為鈍角,當(dāng),,當(dāng),為銳角;當(dāng)不存在時,傾斜角為,對A:,顯然傾斜角為鈍角;對B:,傾斜角為銳角;對C:,傾斜角為銳角;對D:不存在,此時傾斜角為直角.故選:A.3、B【解析】將直線方程的一般形式化為截距式,由此可得其在x軸和y軸上的截距.【詳解】直線方程化成截距式為,所以,故選:B.4、D【解析】首先分別求直線的斜率,再結(jié)合直線傾斜角與斜率的關(guān)系,即可判斷選項.【詳解】A.直線的斜率;B.直線的斜率;C.直線的斜率;D.直線的斜率,因為,結(jié)合直線的斜率與傾斜角的關(guān)系,可知直線的傾斜角最大.故選:D5、A【解析】根據(jù),利用遞推公式求得數(shù)列的通項公式.再根據(jù)新定義的意義,代入解不等式即可求得實數(shù)的取值范圍.【詳解】因為所以當(dāng)時,兩式相減可得,即,所以數(shù)列是以公比的等比數(shù)列當(dāng)時,所以,則由“差半遞增”數(shù)列的定義可知化簡可得解不等式可得即實數(shù)的取值范圍為故選:A.6、A【解析】根據(jù)兩直線垂直的性質(zhì)求出,再結(jié)合充分條件和必要條件的定義即可得出答案.【詳解】解:因為直線與互相垂直,所以,解得或,所以“”是“直線與互相垂直”的充分不必要條件.故選:A.7、B【解析】由已知直線過圓心得,再用均值不等式即可.【詳解】由已知直線過圓心得:,,當(dāng)且僅當(dāng)時取等.故選:B.8、A【解析】先弄清連續(xù)投籃2次,恰有1次命中的情況有兩種,它們是互斥關(guān)系,因此根據(jù)相互獨立事件以及互斥事件的概率計算公式進(jìn)行求解.【詳解】由題意知,他連續(xù)投籃2次,有兩種互斥的情況,即第一次投中第二次不中和第一次不中第二次投中,因此恰有1次命中的概率為,故選:A.9、D【解析】由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù),即可得到結(jié)果【詳解】由約束條件畫出可行域如圖,化目標(biāo)函數(shù)為,由圖可知當(dāng)直線過點時,直線在軸上的截距最小,取得最大值2.故選:D10、D【解析】設(shè)數(shù)列的公比為q,由已知建立方程求得q,再利用等比數(shù)列的通項公式可求得答案.【詳解】解:因為數(shù)列是等比數(shù)列,是其前n項之積,,設(shè)數(shù)列的公比為q,所以,解得,所以,故選:D.11、C【解析】求出兩次取球都沒有取到3的概率,再利用對立事件的概率公式計算作答.【詳解】依題意,每次取到標(biāo)號為3的球的事件為A,則,且每次取球是相互獨立的,在兩次取得小球中,標(biāo)號最大值是3的事件M,其對立事件是兩次都沒有取到標(biāo)號為3的球的事件,,則有,所以在兩次取得小球中,標(biāo)號最大值是3的概率為.故選:C12、C【解析】由,所以為直角三角形,根據(jù)雙曲線的定義結(jié)合勾股定理可得答案.【詳解】由,所以為直角三角形.,根據(jù)雙曲線的定義可得所以,即,即,所以故選:C二、填空題:本題共4小題,每小題5分,共20分。13、504【解析】分兩種情況求解,一是四個數(shù)字中沒有奇數(shù),二是四個數(shù)字中有一個奇數(shù),然后根據(jù)分類加法原理可求得結(jié)果【詳解】當(dāng)四個數(shù)字中沒有奇數(shù)時,則這樣的四位數(shù)有種,當(dāng)四個數(shù)字中有一個奇數(shù)時,則從5個奇數(shù)中選一個奇數(shù),再從4個偶數(shù)中選3個數(shù),然后對這4個數(shù)排列即可,所以有種,所以由分類加法原理可得共有種,故答案為:50414、##0.2【解析】根據(jù)二項分布的均值和方差的計算公式可求解【詳解】依題意得X服從二項分布,則,解得,故答案為:15、【解析】由等差中項的性質(zhì)求參數(shù)m,即可得曲線標(biāo)準(zhǔn)方程,進(jìn)而求其離心率.【詳解】由題意,,可得,所以圓錐曲線為,則,,故.故答案為:.16、【解析】求出線段的垂直平分線方程,與歐拉線方程聯(lián)立,求出的外接圓圓心坐標(biāo),并求出外接圓的半徑,由此可得出的外接圓方程.【詳解】直線的斜率為,線段的中點為,所以,線段的垂直平分線的斜率為,則線段垂直平分線方程為,即,聯(lián)立,解得,即的外心為,所以,的外接圓的半徑為,因此,的外接圓方程為.故答案為:.【點睛】方法點睛:求圓的方程,主要有兩種方法:(1)幾何法:具體過程中要用到初中有關(guān)圓的一些常用性質(zhì)和定理如:①圓心在過切點且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時,切點與兩圓心三點共線;(2)待定系數(shù)法:根據(jù)條件設(shè)出圓的方程,再由題目給出的條件,列出等式,求出相關(guān)量.一般地,與圓心和半徑有關(guān),選擇標(biāo)準(zhǔn)式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數(shù),所以應(yīng)該有三個獨立等式三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)由點在拋物線上可得出,再利用三角形的面積公式可得出關(guān)于的等式,解出正數(shù)的值,即可得出拋物線的標(biāo)準(zhǔn)方程;(2)設(shè)點、,利用斜率公式結(jié)合已知條件可得出的值,分析可知直線不與軸垂直,可設(shè)直線的方程為,將該直線方程與拋物線的方程聯(lián)立,利用韋達(dá)定理求出的值,即可得出結(jié)論.【小問1詳解】解:拋物線的焦點為,由已知可得,則,,,解得,因此,拋物線的方程為.【小問2詳解】證明:設(shè)點、,則,可得.若直線軸,則該直線與拋物線只有一個交點,不合乎題意.設(shè)直線的方程為,聯(lián)立,可得,由韋達(dá)定理可得,可得,此時,合乎題意.所以,直線的方程為,故直線恒過定點.18、(1)相交.(2)或.【解析】(1)先判斷出直線恒過定點(2,1),由(2,1)在圓內(nèi),即可判斷;(2)分斜率存在與不存在兩種情況,利用幾何法求解.【小問1詳解】直線方程,即,則直線恒過定點(2,1).因為,則點(2,1)位于圓的內(nèi)部,故直線與圓相交.【小問2詳解】直線斜率不存在時,直線滿足題意;②直線斜率存在的時候,設(shè)直線方程為,即.因為直線與圓相切,所以圓心到直線的距離等于半徑,即,解得:,則直線方程為:.綜上可得,直線方程或.19、(1)(2)過定點,定點為【解析】(1)利用拋物線的定義求解;(2)設(shè)直線的方程為,,與拋物線方程聯(lián)立,根據(jù)直線與拋物線C相切,由求得,再得到,寫出線段的中垂線方程求解.【小問1詳解】解:由題意得,,解得=2p,因為點M(,4)在拋物線C上,所以42=2p=4p2,解得p=2,所以拋物線C的標(biāo)準(zhǔn)方程為.【小問2詳解】由已知得,直線的斜率存在且不為0,所以設(shè)直線的方程為,與拋物線方程聯(lián)立并消去得:,因為直線與拋物線C相切,所以,得,,所以,得,在中,令得,所以,所以線段中點為,線段的中垂線方程為,所以線段的中垂線過定點.20、(1)(2)【解析】(1)代入點即可求得拋物線方程;(2)聯(lián)立方程后利用韋達(dá)定理求出,,,,然后代入即可求得斜率的積.【小問1詳解】解:點A(1,2)在拋物線C∶上故【小問2詳解】設(shè)直線方程為:聯(lián)立方程,整理得:由題意及韋達(dá)定理可得:,21、(1)證明見解析;(2)【解析】(1)利用題中所給的條件證明,,因為,所以,,即可證明平面;(2)先證明平面,以為坐標(biāo)原點,,,的方向分別為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系,求出平面的一個法向量,平面的一個法向量,利用向量的夾角公式即可求解【詳解】(1)在圖①中,連接,如圖所示:因為四邊形為菱形,,所以是等邊三角形.因為為的中點,所以,.又,所以.在圖②中,,所以,即.因為,所以,.又,,平面.所以平面.(2)由(1)知,,因為,,平面.所以平面.以為坐標(biāo)原點,,,的方向分別為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系:則,,,,.因為為的中點,所以.所以,.設(shè)平面的一個法向量為,由得.令,得,,所以.設(shè)平面的一個法向量為.因為,由得令,,,得則,由圖象可知二面角為銳角,所以二面角的余弦值為.22、(1);(2),,,;(3)存在,或,證明見解析.【解析】(1)設(shè)雙曲線的標(biāo)準(zhǔn)方程為,易知,設(shè),,代入求解即可;(2)分析圓,圓的方程即可求解;(3)利用圓的參數(shù)方程,設(shè),,利用,即可求解,再利用線段PQ上任意一點的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論