版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2026屆福建省福州陽光國際學校高二上數(shù)學期末監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為了調(diào)查全國人口的壽命,抽查了11個?。ㄊ校┑?500名城鎮(zhèn)居民,這2500名城鎮(zhèn)居民的壽命的全體是()A.總體 B.個體C.樣本 D.樣本容量2.已知是虛數(shù)單位,若復數(shù)滿足,則()A. B.2C. D.43.若直線的斜率為,則的傾斜角為()A. B.C. D.4.已知直線過點,且與直線垂直,則直線的方程為()A. B.C. D.5.數(shù)列是公差不為零的等差數(shù)列,為其前n項和.若對任意的,都有,則的值不可能是()A. B.2C. D.36.“”是“直線與圓相切”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知直線的斜率為1,直線的傾斜角比直線的傾斜角小15°,則直線的斜率為()A.-1 B.C. D.18.曲線在處的切線的傾斜角是()A. B.C. D.9.一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,另兩名員工數(shù)據(jù)不清楚,那么8位員工月工資的中位數(shù)不可能是()A.5800 B.6000C.6200 D.640010.下列命題正確的是()A.經(jīng)過三點確定一個平面B.經(jīng)過一條直線和一個點確定一個平面C.四邊形確定一個平面D.兩兩相交且不共點的三條直線確定一個平面11.如圖,正四棱柱ABCD—A1B1C1D1中,AA1=2AB,則異面直線A1B與AD1所成角的余弦值為A. B.C. D.12.已知雙曲線的左、右焦點分別為,過點的直線與圓相切于點,交雙曲線的右支于點,且點是線段的中點,則雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知底面為正方形且各側棱均相等的四棱錐可繞著任意旋轉,平面,分別是的中點,,,點在平面上的射影為點,則當最大時,二面角的大小是________14.如圖,已知正方形邊長為,長方形中,,平面與平面互相垂直,是線段的中點,則異面直線與所成角的余弦值為______15.定義在上的函數(shù)滿足,且對任意都有,則不等式的解集為__________.16.用1,2,3,4排成的無重復數(shù)字的四位數(shù)中,其中1和2不能相鄰的四位數(shù)的個數(shù)為___________(用數(shù)字作答).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點為,直線與拋物線的準線交于點,為坐標原點,(1)求拋物線的方程;(2)直線與拋物線交于,兩點,求的面積18.(12分)某高中招聘教師,首先要對應聘者的簡歷進行篩選,簡歷達標者進入面試,面試環(huán)節(jié)應聘者要回答3道題,第一題為教育心理學知識,答對得4分,答錯得0分,后兩題為學科專業(yè)知識,每道題答對得3分,答錯得0分(1)甲、乙、丙、丁、戊來應聘,他們中僅有3人的簡歷達標,若從這5人中隨機抽取3人,求這3人中恰有2人簡歷達標的概率;(2)某進入面試的應聘者第一題答對的概率為,后兩題答對的概率均為,每道題答對與否互不影響,求該應聘者的面試成績X的分布列及數(shù)學期望19.(12分)如圖,在四棱錐中,底面是菱形,平面,,,分別為,的中點(1)證明:平面;(2)證明:平面20.(12分)已知拋物線的焦點為,經(jīng)過點的直線與拋物線交于兩點,其中點A在第一象限;(1)若直線的斜率為,求的值;(2)求線段的長度的最小值21.(12分)如圖,矩形ABCD,點E,F(xiàn)分別是線段AB,CD的中點,,,以EF為軸,將正方形AEFD翻折至與平面EBCF垂直的位置處.請按圖中所給的方法建立空間直角坐標系,然后用空間向量坐標法完成下列問題(1)求證:直線平面;(2)求直線與平面所成角的正弦值.22.(10分)如圖,PD垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°,F(xiàn)為PA中點,,.四邊形PDCE為矩形,線段PC交DE于點N(1)求證:AC∥平面DEF;(2)求二面角A-BC-P的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由樣本的概念即知.【詳解】由題意可知,這2500名城鎮(zhèn)居民的壽命的全體是樣本.2、C【解析】先求出,然后根據(jù)復數(shù)的模求解即可【詳解】,,則,故選:C3、C【解析】設直線l傾斜角為,根據(jù)題意得到,即可求解.【詳解】設直線l的傾斜角為,因為直線的斜率是,可得,又因為,所以,即直線的傾斜角為.故選:C.4、A【解析】求出直線斜率,利用點斜式可得出直線的方程.【詳解】直線的斜率為,則直線的斜率為,故直線的方程為,即.故選:A.5、A【解析】由已知建立不等式組,可求得,再對各選項逐一驗證可得選項.【詳解】解:因為數(shù)列是公差不為零的等差數(shù)列,為其前n項和.對任意的,都有,所以,即,解得,則當時,,不成立;當時,,成立;當時,,成立;當時,,成立;所以的值不可能是,故選:A.6、A【解析】根據(jù)題意,結合直線與圓的位置關系求出,即可求解.【詳解】根據(jù)題意,由直線與圓相切,知圓心到直線的距離,解得或,因此“”是“直線與圓相切”的充分不必要條件.故選:A.7、C【解析】根據(jù)直線的斜率求出其傾斜角可求得答案.【詳解】設直線的傾斜角為,所以,因為,所以,因為直線的傾斜角比直線的傾斜角小15°,所以直線的傾斜角為,則直線的斜率為.故選:C8、D【解析】求出函數(shù)的導數(shù),再求出并借助導數(shù)的幾何意義求解作答.【詳解】由求導得:,則有,因此,曲線在處的切線的斜率為,所以曲線在處切線的傾斜角是.故選:D9、D【解析】解:∵一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,∴當另外兩名員工的工資都小于5300時,中位數(shù)為(5300+5500)÷2=5400,當另外兩名員工的工資都大于5300時,中位數(shù)為(6100+6500)÷2=6300,∴8位員工月工資的中位數(shù)的取值區(qū)間為[5400,6300],∴8位員工月工資的中位數(shù)不可能是6400.本題選擇D選項.10、D【解析】由平面的基本性質(zhì)結合公理即可判斷.【詳解】對于A,過不在一條直線上三點才能確定一個平面,故A不正確;對于B,經(jīng)過一條直線和直線外一個點確定一個平面,故B不正確;對于C,空間四邊形不能確定一個平面,故C不正確;對于D,兩兩相交且不共點的三條直線確定一個平面,故D正確.故選:D11、D【解析】設AA1=2AB=2,因為,所以異面直線A1B與AD1所成角,,故選D.12、D【解析】焦點三角形問題,可結合為三角形的中位線,判斷:焦點三角形為直角三角形,并且有,,可由勾股定理得出關系,從而得到關系,從而求得漸近線方程.【詳解】由題意知,,且點是線段的中點,點是線段的中點,為三角形的中位線故,故,由雙曲線定義有由勾股定理有故則則,故故漸近線方程為:故選:D【點睛】雙曲線上一點與兩焦點構成的三角形,稱為雙曲線的焦點三角形,與焦點三角形有關的計算或證明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的關系二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】先計算得到二面角的大小為60°,設二面角C-AB-O的大小為,則,計算得到答案.【詳解】解:由題可得,,因為分別是的中點,所以,,又,所以平面因為,所以,所以二面角為,設二面角的大小為,即,則,在中,利用余弦定理得到:,故當時,取得最大值.故答案為:14、【解析】建立如圖所示的空間直角坐標系,求出,后可求異面直線所成角的余弦值.【詳解】長方形可得,因為平面與平面互相垂直,平面平面,平面,故平面,故可建立如圖所示的空間直角坐標系,則,故,,故.故答案為:15、【解析】利用構造函數(shù)法,結合導數(shù)來求得不等式的解集.【詳解】構造函數(shù),,所以在上遞減,由,得,即,所以,即等式的解集為.故答案為:16、【解析】利用插空法計算出正確答案.【詳解】先排,形成個空位,然后將排入,所以符合題意的四位數(shù)的個數(shù)為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)題意建立關于的方程,解得的值即可.(2)聯(lián)列方程組并消元,韋達定理整體思想求的長,再求點到直線的距離,進而求面積.【小問1詳解】由題意可得,,則,因為,所以,解得,故拋物線的方程為【小問2詳解】由(1)可知,則點到直線的距離聯(lián)立,整理得設,,則,從而因為直線過拋物線的焦點,所以故的面積為18、(1)(2)分布列見解析;期望為【解析】(1)根據(jù)古典概型的概率公式即可求出;(2)根據(jù)題意可知,隨機變量X的所有可能取值為0,3,4,6,7,10,再利用相互獨立事件的概率乘法公式分別求出對應的概率,列出分布列即可求出數(shù)學期望【小問1詳解】從這5人中隨機抽取3人,恰有2人簡歷達標的概率為【小問2詳解】由題可知,X的所有可能取值為0,3,4,6,7,10,則,,,,,.故X的分布列為:X0346710P所以19、(1)證明見解析;(2)證明見解析.【解析】(1)取中點,結合三角形中位線性質(zhì)可證得四邊形為平行四邊形,由此得到,由線面平行判定定理可證得結論;(2)利用菱形特點和線面垂直的性質(zhì)可證得,,由線面垂直的判定定理可證得結論.【詳解】(1)取中點,連接,分別為中點,,四邊形為菱形,為中點,,,四邊形為平行四邊形,,又平面,平面,平面.(2)連接,四邊形為菱形,,為等邊三角形,又為中點,,平面,平面,,又平面,,平面.20、(1)3;(2)12.【解析】(1)聯(lián)立直線l與拋物線C的方程,求出A和B的橫坐標即可得AFBF(2)設直線l方程為,與拋物線C方程聯(lián)立,求出線段AB長度求其最小值即可.【小問1詳解】設,拋物線的焦點為,直線l經(jīng)過點F且斜率,直線l的方程為,將直線l方程與拋物線消去y可得,點A是第一象限內(nèi)的交點,解方程得,∴.【小問2詳解】設,由題知直線l斜率不為0,故設直線l的方程為:,代入拋物線C的方程化簡得,,∵>0,∴,∴,當且僅當m=0時取等號,∴AB長度最小值為12.21、(1)證明見解析;(2).【解析】(1)以為坐標原點,建立空間直角坐標系,寫出對應向量的坐標,根據(jù)向量垂直,即可證明線面垂直;(2)根據(jù)(1)中所求平面的法向量,利用向量法,即可容易求得結果.【小問1詳解】矩形ABCD中,點E,F(xiàn)分別是線段AB,CD的中點,∴,∴翻折后∵平面平面,且面,面,故可得面,又面,∴,故兩兩垂直,∴分別以,,為,,軸建立如圖所示空間直角坐標系:∵,則,,,,,,∵,,∴,∴,,又面,∴平面.【小問2詳解】由(1)知,平面的法向量為,又向量,則向量與法向量為所成角的余角即是直線與平面所成角,設直線與平面所成角為,向量與法向量為所成角為,則.故直線與平面所成角正弦值為.22、(1)證明見解析;(2).【解析】(1)記PC交DE于點N,然后證明FN∥AC,進而通過線面平行的判定定理證明問題;(2)建立空間直角坐標系,進而通過空間向量夾角公式求得答案.【小問1詳解】因為四邊形PDCE為矩形,線段PC交DE于點N,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- (新)護理三基三嚴培訓計劃及實施方案
- 《農(nóng)村生活污水處理設施運行效果評估與優(yōu)化策略研究》教學研究課題報告
- 幼兒園音樂教學中節(jié)奏感培養(yǎng)與幼兒情感發(fā)展課題報告教學研究課題報告
- 2025中國資源循環(huán)集團機動車有限公司崗位招聘備考題庫及答案詳解(奪冠系列)
- 1.2第1課時自由組合定律同步學案(含答案)
- 2026廣西防城港市防城區(qū)商務和口岸管理局招聘1人備考題庫及參考答案詳解
- 2026廣東中山市橫欄偉智學校教師招聘12人備考題庫及完整答案詳解
- 2026江蘇蘇州工業(yè)園區(qū)翰林幼兒園后勤輔助人員招聘1人備考題庫及答案詳解一套
- 2026云南德宏職業(yè)學院引進研究生10人備考題庫及完整答案詳解1套
- 2026年紅河州個舊市城市發(fā)展集團有限公司就業(yè)見習基地招募見習生備考題庫(20人)及完整答案詳解一套
- 數(shù)字孿生方案
- 【低空經(jīng)濟】無人機AI巡檢系統(tǒng)設計方案
- 金融領域人工智能算法應用倫理與安全評規(guī)范
- 機動車駕校安全培訓課件
- 2025年役前訓練考試題庫及答案
- 2024VADOD臨床實踐指南:耳鳴的管理課件
- 2025年湖南省公務員錄用考試錄用考試《申論》標準試卷及答案
- 行政崗位面試問題庫及應對策略
- 2025年中信金融業(yè)務面試題庫及答案
- 2025廣東潮州府城文化旅游投資集團有限公司下屬企業(yè)副總經(jīng)理崗位招聘1人筆試歷年備考題庫附帶答案詳解2套試卷
- 城市軌道交通服務與管理崗位面試技巧
評論
0/150
提交評論