陜西省寶雞市渭濱區(qū)2025-2026學(xué)年高二上學(xué)期期末考試數(shù)學(xué)試題(原卷版+解析版)_第1頁
陜西省寶雞市渭濱區(qū)2025-2026學(xué)年高二上學(xué)期期末考試數(shù)學(xué)試題(原卷版+解析版)_第2頁
陜西省寶雞市渭濱區(qū)2025-2026學(xué)年高二上學(xué)期期末考試數(shù)學(xué)試題(原卷版+解析版)_第3頁
陜西省寶雞市渭濱區(qū)2025-2026學(xué)年高二上學(xué)期期末考試數(shù)學(xué)試題(原卷版+解析版)_第4頁
陜西省寶雞市渭濱區(qū)2025-2026學(xué)年高二上學(xué)期期末考試數(shù)學(xué)試題(原卷版+解析版)_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

高二年級數(shù)學(xué)試卷202601考生注意:1.本試卷分選擇題和非選擇題兩部分.滿分150分,考試時間120分鐘.2.答題前,考生務(wù)必用直徑0.5毫米黑色墨水簽字筆將密封線內(nèi)項目填寫清楚.3.考生作答時,請將答案答在答題卡上.選擇題每小題選出答案后,用2B鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑;非選擇題請用直徑0.5毫米黑色墨水簽字筆在答題卡上各題的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效,在試題卷、草稿紙上作答無效.4.本卷命題范圍:人教A版選擇性必修第一冊,選擇性必修第二冊第四章.一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.拋物線的準(zhǔn)線方程為()A. B. C. D.2.已知數(shù)列滿足,則()A. B. C.5 D.73.已知向量,若,則()A.7 B.5 C. D.4.若直線被圓截得的弦長為,則()A. B. C.2 D.5.一動圓與圓外切,同時與圓內(nèi)切,則該動圓圓心軌跡是()A.拋物線 B.雙曲線的一支 C.橢圓 D.圓6.某無人機愛好者組織小規(guī)模無人機表演,按照如圖所示規(guī)律排列圖形,若從第一組開始依次排列,則210架無人機可以同時排出的圖形組數(shù)是()A.14 B.13 C.12 D.117.已知橢圓的右焦點為,為上任意一點,點,則的最大值為()A.4 B.5 C.6 D.8.已知,分別為雙曲線的左、右焦點,過原點的直線交于,兩點,若,為銳角三角形,則的離心率的取值范圍為()A. B. C. D.二、選擇題:本題共3小題,每小題6分,共18分.在每小題給出的選項中,有多項符合題目要求.全部選對的得6分,部分選對的得部分分,有選錯的得0分.9.已知直線滿足,且間距離為,若的方程為,則的方程為()A. B.C. D.10.在平行六面體中,,點是上靠近的三等分點,設(shè),則()A. B.C. D.11.已知數(shù)列滿足,數(shù)列滿足,設(shè)中不在中的項按從小到大的順序構(gòu)成新數(shù)列,記的前項和為,則()A. B.是等比數(shù)列C. D.三、填空題:本題共3小題,每小題5分,共15分.12.若成等差數(shù)列,則________.13.若直線過原點,且直線的方向向量,則點到直線的距離為__________.14.數(shù)學(xué)美的表現(xiàn)形式不同于自然美或藝術(shù)美那樣直觀,它蘊藏于特有的抽象概念、公式符號、推理論證、思維方法等之中,揭示了規(guī)律性,是一種科學(xué)的真實美.在平面直角坐標(biāo)系中,曲線就是一條形狀優(yōu)美的曲線,若是曲線C上任意一點,的最小值為______.四、解答題:本題共5小題,共77分.解答應(yīng)寫出文字說明、證明過程或演算步驟.15.已知數(shù)列的前項和為.(1)若為等比數(shù)列,,,求的公比;(2)若為等差數(shù)列,,,求.16.已知圓的圓心在直線上,并且過和兩點.(1)求圓的標(biāo)準(zhǔn)方程;(2)過直線上一點作圓的切線,,切點為,,求四邊形面積最小值.17.如圖,在四棱錐中,四邊形是邊長為2的正方形,,平面平面.(1)求證:平面平面;(2)求直線與平面所成角的正弦值.18已知數(shù)列滿足,.(1)求數(shù)列通項公式;(2)若,求數(shù)列的前項和;(3)若,數(shù)列前項和為,證明:.19.已知橢圓的右焦點為上一動點到的距離的取值范圍為.(1)求的標(biāo)準(zhǔn)方程;(2)設(shè)斜率為的直線過點,交于,兩點.記線段的中點為,直線交直線于點,直線交于,兩點.①求的大?。虎谇笏倪呅蚊娣e的最小值.高二年級數(shù)學(xué)試卷202601考生注意:1.本試卷分選擇題和非選擇題兩部分.滿分150分,考試時間120分鐘.2.答題前,考生務(wù)必用直徑0.5毫米黑色墨水簽字筆將密封線內(nèi)項目填寫清楚.3.考生作答時,請將答案答在答題卡上.選擇題每小題選出答案后,用2B鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑;非選擇題請用直徑0.5毫米黑色墨水簽字筆在答題卡上各題的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效,在試題卷、草稿紙上作答無效.4.本卷命題范圍:人教A版選擇性必修第一冊,選擇性必修第二冊第四章.一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.拋物線的準(zhǔn)線方程為()A. B. C. D.【答案】C【解析】【分析】根據(jù)拋物線方程即可求解準(zhǔn)線方程.【詳解】由得,即,故準(zhǔn)線方程為,故選:C2.已知數(shù)列滿足,則()A. B. C.5 D.7【答案】A【解析】【分析】根據(jù)題意,利用,代值計算,即可求解.【詳解】由數(shù)列滿足,可得.故選:A.3.已知向量,若,則()A.7 B.5 C. D.【答案】D【解析】【分析】根據(jù)空間向量共線定理進(jìn)行求解即可.【詳解】因為,所以,即.故選:D4.若直線被圓截得的弦長為,則()A. B. C.2 D.【答案】A【解析】【分析】直接根據(jù)圓的弦長公式可得.【詳解】由圓,圓心,半徑.則圓心到直線的距離,又因為截得的弦長為,所以,化簡得,解得.故選:A.5.一動圓與圓外切,同時與圓內(nèi)切,則該動圓圓心的軌跡是()A.拋物線 B.雙曲線的一支 C.橢圓 D.圓【答案】C【解析】【分析】由圓與圓的位置關(guān)系確定,,,再利用橢圓的定義可求.【詳解】如圖,設(shè)動圓的圓心為,半徑為,由題意得圓:,圓:,則,,,所以,所以點的軌跡為以,為焦點,長軸長為的橢圓(除去點).故選:C.6.某無人機愛好者組織小規(guī)模無人機表演,按照如圖所示規(guī)律排列圖形,若從第一組開始依次排列,則210架無人機可以同時排出的圖形組數(shù)是()A.14 B.13 C.12 D.11【答案】C【解析】【分析】記第組中無人機的架數(shù)為,可知數(shù)列是首項為1,公差為3的等差數(shù)列,結(jié)合等差數(shù)列求和公式運算求解.【詳解】記第組中無人機的架數(shù)為,由圖形可得,可知數(shù)列是首項為1,公差為3的等差數(shù)列,則數(shù)列的前項和,令,得,解得(舍)或,所以210架無人機可以同時排出的圖形組數(shù)是12.故選:C7.已知橢圓的右焦點為,為上任意一點,點,則的最大值為()A.4 B.5 C.6 D.【答案】B【解析】【分析】根據(jù)橢圓的定義,將轉(zhuǎn)化為,當(dāng)在線段上時,取最大值即,再利用兩點距離公式就可求解.【詳解】由題意,橢圓的左焦點為,由橢圓定義可得,所以,因為,故在橢圓內(nèi),所以,當(dāng)在線段上時,等號成立.故選:B.8.已知,分別為雙曲線的左、右焦點,過原點的直線交于,兩點,若,為銳角三角形,則的離心率的取值范圍為()A. B. C. D.【答案】D【解析】【分析】應(yīng)用雙曲線定義結(jié)合已知條件得出,,再結(jié)合余弦定理得出邊長間關(guān)系得出,即可得出離心率范圍.【詳解】由題意知,,關(guān)于原點對稱,不妨設(shè)點為第一象限內(nèi)一點,則,,又,,所以,,記,因為為銳角三角形,所以,,,即,,,解得,所以.故選:D二、選擇題:本題共3小題,每小題6分,共18分.在每小題給出的選項中,有多項符合題目要求.全部選對的得6分,部分選對的得部分分,有選錯的得0分.9.已知直線滿足,且間的距離為,若的方程為,則的方程為()A. B.C. D.【答案】AB【解析】【分析】設(shè)直線的方程為,由平行線間距離公式即可求解.【詳解】設(shè)直線的方程為,則間的距離,解得,或,所以直線的方程為或.故選:AB.10.在平行六面體中,,點是上靠近的三等分點,設(shè),則()A. B.C. D.【答案】ABD【解析】【分析】對于A選項通過空間向量的加減法,將向量按向量減法法則變形為,利用向量與基底的關(guān)系得到表達(dá)式;對于B選項根據(jù)空間向量的線性運算,通過選取路徑,結(jié)合三等分點的向量表示,得出結(jié)果;對于C選項,展開向量平方并代入已知模長與夾角的內(nèi)積公式,綜合運用空間向量數(shù)量積的運算法則;對于D選項,通過計算其數(shù)量積是否為零來實現(xiàn),再次利用已知夾角與向量內(nèi)積的性質(zhì).【詳解】對于A選項,在平行六面體中,,故A正確;對于B選項,因為點是上靠近的三等分點,所以,又,所以,故B正確;對于C選項,因為,,,所以,所以,故C錯誤;對于D選項,,所以,故D正確.故選:ABD11.已知數(shù)列滿足,數(shù)列滿足,設(shè)中不在中的項按從小到大的順序構(gòu)成新數(shù)列,記的前項和為,則()A. B.等比數(shù)列C. D.【答案】AC【解析】【分析】由的遞推公式可判斷A,由可判斷B,確定數(shù)列中含的個數(shù),可判斷CD;【詳解】對于A:由,可得:,所以:,所以,正確,對于B:所以,即是首項為2,公比為2的等比數(shù)列,所以,所以則,不是等比數(shù)列,錯誤;對于C:數(shù)列的第106項為213,又,,,,,,,所以,所以的前項和為,C對,D錯;故選:AC三、填空題:本題共3小題,每小題5分,共15分.12.若成等差數(shù)列,則________.【答案】【解析】【分析】根據(jù)題意,利用等差中項公式,列出方程,即可求解.【詳解】因為成等差數(shù)列,所以,解得.故答案為:.13.若直線過原點,且直線的方向向量,則點到直線的距離為__________.【答案】##【解析】【分析】利用空間向量的方法計算點到直線的距離,已知點與點,首先求在直線上的投影向量為的模長,然后再利用勾股定理即可求出點到直線的距離.【詳解】設(shè)向量在直線上的投影向量為,則,所以點到直線的距離.故答案為:.14.數(shù)學(xué)美的表現(xiàn)形式不同于自然美或藝術(shù)美那樣直觀,它蘊藏于特有的抽象概念、公式符號、推理論證、思維方法等之中,揭示了規(guī)律性,是一種科學(xué)的真實美.在平面直角坐標(biāo)系中,曲線就是一條形狀優(yōu)美的曲線,若是曲線C上任意一點,的最小值為______.【答案】【解析】【分析】根據(jù)曲線方程分析曲線的性質(zhì)及形狀,問題化為各圓弧上點到直線的距離,再應(yīng)用圓上點到直線的距離求法確定最值.【詳解】曲線,當(dāng),時,曲線C的方程可化為,當(dāng),時,曲線C的方程可化為,當(dāng),時,曲線C的方程可化為,當(dāng),時,曲線C的方程可化為,作出曲線如圖:到直線的距離,則即為,要求得的最小值,結(jié)合曲線的對稱性,只需考慮,時的情況;當(dāng),時,曲線C的方程為,曲線為圓心為,半徑為的圓的一部分,而到直線的距離為,由圓的性質(zhì)得曲線C上一點到直線的距離最小為,故的最小值為.故答案為:.四、解答題:本題共5小題,共77分.解答應(yīng)寫出文字說明、證明過程或演算步驟.15.已知數(shù)列的前項和為.(1)若為等比數(shù)列,,,求的公比;(2)若為等差數(shù)列,,,求.【答案】(1)1或(2)-100【解析】【分析】(1)根據(jù)等比數(shù)列的通項公式列出關(guān)于首項和公比的方程組,解方程組即可(2)方法1:根據(jù)等差數(shù)列結(jié)合下標(biāo)和性質(zhì)即可求解;方法2,根據(jù)等差數(shù)列的公式列出關(guān)于和的方程組,解方程組即可.【小問1詳解】設(shè)數(shù)列的公比為,由題意得兩式相除,得,即,解得,或.【小問2詳解】法1:由,,得,因為這些項成等差數(shù)列,且項數(shù)為80,由等差數(shù)列的性質(zhì),得,所以,所以,所以.法2:設(shè)數(shù)列的公差為,由,,得化簡,得解得所以.16.已知圓的圓心在直線上,并且過和兩點.(1)求圓的標(biāo)準(zhǔn)方程;(2)過直線上一點作圓的切線,,切點為,,求四邊形面積最小值.【答案】(1)(2)【解析】【分析】(1)根據(jù)題意,設(shè),列出方程求得,求得圓;(2)根據(jù)題意求得,當(dāng)時,得到,取得最小值,進(jìn)而得出面積的最小值.【小問1詳解】由題意,圓心在直線上,可設(shè),因為圓過點,且過點,可得,整理得,所以,即,且半徑所以圓的方程為.【小問2詳解】由(1)知,圓,圓心,半徑,則四邊形的面積,設(shè),因為,所以當(dāng)時,,此時四邊形的面積最小,最小值為;17.如圖,在四棱錐中,四邊形是邊長為2的正方形,,平面平面.(1)求證:平面平面;(2)求直線與平面所成角的正弦值.【答案】(1)證明見解析(2)【解析】【分析】(1)根據(jù)面面垂直的性質(zhì)得平面,進(jìn)而得,再根據(jù)即可結(jié)合證明平面,最后證明結(jié)論;(2)分別取的中點,連結(jié),進(jìn)而證明對應(yīng)的垂直關(guān)系,建立如圖所示的空間直角坐標(biāo)系,利用坐標(biāo)法求解即可.小問1詳解】證明:因為四邊形是正方形,所以.因為平面平面,平面平面平面,所以平面.又平面PAD,所以,又平面,所以平面,又平面PCD,所以平面平面PCD.【小問2詳解】解:分別取的中點,連結(jié),因為,所以,且,因為四邊形ABCD是正方形,分別是的中點,所以,所以四邊形是平行四邊形,,又平面平面,所以,即,又,所以,以點為坐標(biāo)原點,直線分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系.則,.設(shè)為平面的一個法向量,則令,得,所以.設(shè)直線與平面所成角為,則,即直線與平面所成角的正弦值為.18.已知數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列前項和;(3)若,數(shù)列的前項和為,證明:.【答案】(1)(2)(3)證明見解析【解析】【分析】(1)根據(jù)題意,得到,利用累乘法,求得,進(jìn)而得到的通項公式;(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論